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ABSTRACT

The established view for horse race handicapping and staking strategies is to 
model them as a classification problem using factors describing horse, jockey, 
trainer, and racing history coupled with public odds, solved via a logistic 
regression. Logistic regression probabilities are then normalised, and bets 
filtered by threshold, or anomalous pricing. However, published algorithms do 
not show systematic profitability, nor do machine learning approaches using 
algorithmic betting strategies. This deficiency is due to three factors. First, 
wins are rare and racing data are thus imbalanced. Second, racing factors are 
multicollinear. Third, the number of factors needed for accurate prediction is 
very large. We show that alternative methods using variants from principal 
component analysis produces sustainable profitability regardless of staking 
strategy through a reduction of factors to fundamental drivers. We apply a 
partial least squares regression methodology to Australian thoroughbred 
racing. This approach is shown to outperform logistic regression and machine 
learning methods in classifying winners for a profitable trading strategy. This 
method can be applied to multiple betting domains.

Keywords: partial least squares, logistic regression, horse racing, imbalanced 
data

1  INTRODUCTION

The established analytical approach for thoroughbred race handicapping and 
staking strategies is for odds estimation in betting to be modelled as a 
classification problem using factors describing the horse, jockey, and or trainer, 
as well as training and racing history, coupled with public odds, and solved 
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using a logistic regression. Logistic regression probabilities are then 
normalized, and optimal bets can be chosen using a threshold filter or by 
searching for under-priced runners and applying a staking process aligned 
with the Kelly criterion (Kelly, 1956). Benter (1994) famously demonstrated 
the capacity to earn positive returns using a computer-generated betting 
strategy based on a variant of this approach. Well-known gambling identities 
Alan Woods and Patrick Veitch have described detailed implementation 
methods and factors used to rank thoroughbreds for odds estimation. However, 
the durability of these methods in practice has been limited. 

To the best of our knowledge, most published algorithms fail to show 
systematic profitability. Similarly, none of the published solutions from the 
machine learning domain result in a viable betting algorithmic strategy. One 
can develop and apply any of them, adapt them for local data, generate bets and 
the resulting expectation is that one will lose money over the medium term. 
Sustained profitability based on persistent pricing anomalies from racing 
metrics is difficult to achieve in practice.

There are several reasons explaining the dislocation between a theoretically 
proven betting/staking strategy and profitability. First, wins are rare and racing 
data are imbalanced. Classifiers, including logistic regression methods, will 
underestimate the probability of rare events unless this imbalance is corrected. 
Popular approaches to rebalancing data are divided into pre-processing, post-
processing, and hybrid methods. Pre-processing is a simple but effective 
technique that avoids issues of signal detection using arbitrary thresholds from 
model estimates. Any one of several pre-processing corrections can be applied, 
including up-sampling, down-sampling, and class re-weighting. In this analysis 
we adopt the pre-processing technique of up sampling (scaling) to address the 
imbalance which retains the benefits of a large sample size to maximise 
predictive power.

Second, many of the factors used to predict racing ability are multicollinear. 
To defend against model misspecification, regression methodologies demand 
the use of independent factors or at least the use of an alternative approach 
whereby factors are transformed into principal components. Finally, racing 
guides contain, and experts use, many more factors than the 20 or so factors 
often cited in published algorithms. Racing data is now so prevalent that 
potentially thousands of factors are available for analysis, many of which are at 
least weakly informative and thus can provide incremental information for 
prediction.

In this analysis we show how classification accuracy improves when 
adjusting for imbalanced data using a pre-processing approach. We then define 
principal components, using a variant of Partial Least Squares (PLS) estimation, 
from a large set of factors and align them with expert knowledge and publicly 
available odds. We show that by integrating these derived factors with a logistic 
regression approach greatly reduces prediction error and improves profitability 
regardless of staking strategy. This approach can accommodate any number of 
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correlated factors from data with limited sample size and missing values, with 
only a minor impact on prediction accuracy.

2  METHODOLOGY

The application of conditional logistic regression to horse racing was popularised 
by Boltman and Chapman (1986) and extended by a range of authors (Benter, 
1994; Edelman, 2006; Silverman and Suchard, 2013). The evolution of the 
research in this field has been aimed at improving the calculation of a horse’s 
“strength” estimated using a conditional logistic regression on identifiable 
factors and combining this with a payoff dividend related to market odds. The 
likelihood of the conditional logit can be expressed as
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which combines previous model predicted “strength” α = {1,2,…,A} and 
historical limit A with the “odds implied probability” p = {1,2,…,P} for a 
runner. The payoff dividend for a horse is converted to an implied probability 
p(xh) = 1

dh
 or p̃(xh) = 1

dh+δ  where δ is the track take from a parimutuel pool. 
The value p is the bettor implied confidence rather than a genuine estimate of 
outcome probabilities which is an aggregate estimate of the betting public’s 
opinion.

The expression above expression is formulated as follows. A race r = 
{1,2,…,R} is run between multiple horses h = {1,2,…,H} with a single runner 
winning. The racing characteristics of each horse is represented by a k 
dimensional vector Xrh with the covariates X represented by an N × K 
dimensional matrix where each row represents the covariates of each horse / 
jockey / trainer characteristics, β as a column of k regression coefficients, and 
pi as the probability of winning an event (raw response variable). The probability 
of each runner h winning in race r is
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where the winning probabilities of race r sum to 1, ∑ prh =1. Estimates for  
the regression coefficients β in Xrhβ are typically derived using logistic 
regression
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The formulation in (1) combines the set of regression coefficient estimates 
(the “strength” estimate) αrh

w β1 with the odds implied probability prh
w β2 to 
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derive a fundamental probability estimate for each runner. Strength estimates 
can be obtained using various techniques including conditional logistic 
regression (Benter, 1994), support vector regression on a runner’s finishing 
position (Edelman, 2006), support vector classifier coupled with distance 
from the hyperplane (Lessmann and Sung, 2007), CART (Lessmann and 
Sung, 2010), LASSO regression or variants of the Cox Proportional Hazards 
model (Silverman and Suchard, 2013). Despite different methods for 
calculating the “strength” of a horse, existing models rely on the standard 
conditional logistic regression as a key component for their prediction 
algorithm.

There are well-known shortfalls to this approach, and in many cases 
previous scholars have admitted to these issues as limitations to the 
generalisability of their results. When a large set of j explanatory variables  
xj, j∈{1,2,…,n} are required to forecast a single response variable y using a 
sample of size n where all regressors contain information, the use of ordinary 
least squares (OLS) or logistic regression (LR) can be problematic when  
j >> n or j is at least large relative to n. An OLS or logit model of this type may 
also be mis-specified when the variables xj are collinear, and where the variance 
of the model is of order j ≈ n the prediction estimates may be biased. Importantly, 
even when j > 3, the OLS or logit estimator can be inadmissible using a mean 
square error (MSE) criterion (James and Stein, 1961) which can undermine the 
typical diagnostics applied to such models to test for validity. 

These issues have motivated the use of shrinkage estimation methods. 
Some shrinkage estimators such as RIDGE and LASSO are relatively specific 
criteria-based choices in the space of OLS-consistent solutions. Recent 
algorithms have applied random forests and gradient boosting machines 
(GBM). Whereas random forests build an ensemble of deep independent trees, 
GBMs build an ensemble of shallow and weak successive trees with each tree 
learning and improving on the previous. These can be combined such that the 
many weak successive trees produce a powerful ensemble algorithm. However, 
shrinkage estimation and machine learning derivatives still suffer from the 
same issues of collinearity and small sample size relative to factors that 
undermines the more orthodox methods.

We offer an alternative approach to existing approaches that entirely 
circumvents the limitations related to standard regressions. Partial Least 
Squares (PLS) techniques, along with other dimension reduction methods, 
have been used in chemometrics and related applications where j >> n. In an 
early PLS method Wold (1966) uses latent quantitative factor variables (akin 
to principal components) from the data to regress an outcome variable 
against many components. The contribution of each variable is evaluated 
using standardized model coefficients, with the outputs indicating the 
direction and magnitude of the effect. A positive correlation between the 
independent variable and the outcome variable is inferred for positive 
coefficients.
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For a typical multiple linear regression approach the least-squares solution 
for 

Y = XB + ε,� (1)

is 

B = (XTX)–1XTY.� (2)

When j >> n and/or in the presence of collinearities the estimate for X TX 
becomes singular and unable to converge to a unique solution. The PLS approach 
averts this by decomposing X into orthogonal ‘scores’ F and ‘loadings’ P

X = FP,� (3)

and regressing Y not on X  itself but on the first n columns of the ‘scores’ F. The 
PLS approach therefore incorporates information on both X and Y in the 
definition of the ‘scores’ and ‘loadings’. The PLS algorithm performs a 
simultaneous bilinear decomposition of the outcome variable and the 
regressors. Scores F and loadings P are orthogonal and the following 
decompositions are carried out concurrently

x = q1
' f1 + ... + qu

' fu  + Eu,� (4a)

x = p1
' f1 + ... + pu

' fu  + eu,� (4b)

where fi are the individual scores, and pi and qi are the loadings generated at 
each step. The suffix m represents the final step of the calibration process and 
by design, the algorithm converges in the sense that after p steps the factors 
will be identical and equal to zero. The recursive formulas for the scores and 
loadings provide a linear form like the predictions of the estimators

yPLS = x't=0 βPLS(m),� (5)

where

βPLS(m) = Wm (W'mΣWm)–1W'mσxy,� (6)

and Wm = (w1, … ,wm) is obtained after m recursions of the algorithm by 
stacking weights generated at each step, which are effectively the weighted 
covariances of the predictors and the response.

We extend the PLS approach to a generalised linear regression model 
(PLSGLR) which appropriately accounts for missing data. The PLSGLR 
regression of the response yPLS on variables xi is defined as

g(θ)i = ∑H
h=1 (B∑u

j=1 w*
jxxij),� (7)
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with H components, where θ is a probability vector of the response variable 
yPLS with a finite support. The components xij are built to be orthogonal and the 
link function g(.) is a logistic function to fit the model to the data.

In conceptual terms, the PLS method projects the input and output variables 
in directions of maximum covariance, with the calibration performed between 
the orthogonal ‘latent’ variables. This approach has been shown to be stable 
with respect to collinearity (Esbensen, 2002) and is able to generate unbiased 
prediction equations from pre-processed datasets (Sundberg et al., 1999;  
Wold et al., 2001).

We validate the PLS method using a k-fold leave-one-out cross-validation 
approach to identify significant variables contributing to the best fit of the 
model. The advantage of PLS over other approaches is that it identifies only 
relevant predictor variables, while other linear models require pre-selection of 
potential predictor variables prior to regression analysis. The disadvantage of 
PLS is that the resulting components don’t necessarily correspond to a specific 
‘factor’ unlike typical regressions that identify predictive attributes directly 
related to the data.

Model estimation and subsequent prediction is affected by the presence of 
imbalanced data (many losers, few winners). Importantly, model diagnostics 
are also affected by imbalanced data. For classification, accuracy and its 
complement error rate used to assess performance when defined as 

Accuracy TP TN

TP FN TN FP
�

�

� � �
,� (7)

where the correctly classified number of outcomes for True Positive (TP) and 
True Negative (TN) are combined with incorrectly classified outcomes for 
False Positives (FP) and False Negatives (FN). High accuracy can be obtained 
by predicting a loss for all test races while winners are misclassified. This 
metric is of little use when predicting relatively rare outcomes is the objective.

An alternative metric for imbalanced data is the geometric mean Gmean 
which is defined as

G sensitivity specficitymean
TP

TP FN

TN

TN FP
� � � �

� �
 .� (8)

The Gmean computes the geometric mean of the accuracies of each class 
seeking to measure the relative balance between classification. These metrics 
are used to compare model accuracy in the analysis below.

3  DATA AND SETUP

We use a data set of all competitive thoroughbred horse races in Australia from 
January 2019 to December 2021 in both metropolitan and provincial grades 
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(but excluding country-level races which are in remote locations with limited 
competitiveness and market liquidity). Race distances vary from 1000m to 
3200m under all weather conditions and multiple field sizes. Hurdles and 
steeplechase races are excluded. To eliminate possible bias, maidens (runners 
who are yet to win) are initially excluded, but when added to the training and 
test data sets for model verification made little difference to accuracy. Events 
with fewer than five runners, more than one winner (a tie), and for which no 
pricing data is available were excluded.

Data is obtained for a range of primary variables which are provided in the 
Appendix. There are hundreds of potential variables that can be used but we 
constrain the list to 22 of the most promising for this analysis. Figure 1 provides 
a correlation matrix pictorial of the strength of the relationship between 
variables over the full period. Several variables are highly correlated (positive 
in blue, negative in red) which is known to bias regression coefficient estimates. 
The effects of high correlation are of no concern for the PLS regression when 
the dimensions of the data are reduced to orthogonal components but have 
deleterious effects on the applicability of regression methods.

We split the data into two halves with pre-July 2020 designated as  
the training data set and post-July 2020 as the test data set. This results in 

Figure 1. Correlation matrix between factors used in the analysis
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9,060 events in each of the training and test data sets. Table 1 provides a  
chi-squared style comparison of win percentage both training and test data 
sets, against expected win probability implied by the starting prices for each 
event. The χ2 p-values for win percentages in both the training and test data 
sets is <0.001. A feature of these results is that no hint of favourite-longshot 
bias (i.e., overvaluing longshots and undervaluing favourites; Sobel & Raines, 
2003) or other forms of bias appears in either data set. 

To avoid issues related to bias from the presence of few winners relative to 
many losers, the training data set was ‘up-sampled’ using bootstrap resampling 
so that the number of winners exceeded 40 per cent of the data used to train 
each model, where the number of observations (individual runners) increased 
from 85,540 to 147,170. We use both logistic regression and PLSGLM regression 
to classify runners into winners and losers per race.

4  RESULTS

The logistic regression results using the up-sampled training data set are 
provided in Table 2.

A total of 14 variables are significant at a 95% confidence level with the 
AIC of 15,975 marginally improved over the AIC of the alternative formulation 
to use all variables of 16,025. Variables representing previous wins at the 
current track, jockey rating, horse rating, and price are strongly related to win 
probability.

The PLSGLM logistic regression was calibrated using the training data set 
and the results are provided in graphical form for ease of interpretation. Figure 2  
indicates the explanatory strength of each coefficient (numbered 1 to 22 on the 
x-axis) represented by each regression component (first five components are 
shown). One variable (price at start of day) exerts a strong influence on the 

Table 1. Chi-squared style comparison of win percentage between training and 
test data sets, against expected win probability implied by starting prices, 
Australian thoroughbreds, 2019–2021

Price Category Training Data Win % Test Data Win % Expected Win %
$1 – $2 56.83% 57.46% 56.97%

$2 – $3 39.28% 37.86% 38.35%

$3 – $4 27.65% 28.39% 28.06%

$4 – $5 21.35% 21.64% 22.00%

$5 – $10 13.72% 14.02% 13.25%

$10 – $20 6.97% 6.92% 6.67%

$20 – $50 3.30% 3.38% 3.10%

$50 – $100 1.60% 1.36% 1.41%

$100+ 0.45% 0.41% 0.37%
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Table 2. Logistic regression results (odds ratios, 95% confidence intervals, 
p-values) for thoroughbred races in Australia, Jan 2019-Jun 2020

Variable Coefficient Std Err. Odds Ratio 95% CI p-value
Start price last start –0.041 0.012 0.94 (0.87, 1.01) 0.091

Track win (previous) 0.016 0.005 1.17 (1.06, 1.29) 0.002

Grade difference –0.005 0.001 0.99 (0.98, 1.00) 0.007

Distance difference 0.000 0.000 1.00 (1.00, 1.00) 0.018

Finishing speed –0.065 0.015 0.93 (0.86, 1.02) 0.110

Horse rating 0.032 0.004 1.03 (1.01, 1.06) 0.006

Jockey rating 0.223 0.012 1.32 (1.24, 1.40) <0.001

Expected position –0.002 0.014 1.07 (0.99, 1.17) 0.100

Barrier adjustment –0.005 0.027 0.80 (0.67, 0.95) 0.009

Quick back up 0.009 0.002 0.98 (0.96, 0.99) 0.007

Handicap –0.012 0.003 0.96 (0.93, 0.99) 0.002

Peak rating 0.014 0.003 0.94 (0.90, 0.98) 0.002

Race distance 0.000 0.000 1.00 (1.00, 1.00) 0.001

Price at start of day 0.385 0.003 1.57 (1.54, 1.61) <0.001

Figure 2. Partial least squares regression coefficient estimates by variable 
(Australian thoroughbreds Jan 19 – Jun 20)

decomposition relative to other variables in a similar way to its influence over 
the logistic regression model. The correlation loading between the first two 
most significant components are provided in Figure 3, which indicates that 
while the first component is dominant, it is also unbiased.
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Figure 3. Partial least squares regression correlation loading, first two components 
(Australian thoroughbreds Jan 19 – Jun 20)

Figure 4 depicts the Root Mean Squared Error of Prediction (RMSEP) 
from the bias-corrected cross-validation estimate as the number of principal 
components is added to the model. The RMSEP reaches a stable minimum 
after 8 components are added. Prediction quality is provided in Figure 5 using 
the test data, which shows predicted probabilities relative to measured 
probabilities (implied by market odds). There are some differences at the lower 
‘scores’ (low win probability) but the bulk of the predicted scores for runners at 
higher probabilities tracks measured values.

A comparison of the effect of up-sampling winners in the training data set 
is depicted in Figure 6. Estimated prices using the PLSGLM model derived 
from the up-sampled data are closely aligned with market observed prices 
(start prices) which have been shown to be relatively accurate (Table 1). Some 
divergence is present at higher prices (lower odds) however the fact that most 
trades are placed on runners at odds representing a winning probability 
greater than around 15 percent is the critical zone in which correct model 
estimates are important. Model estimates for the PLSGLM model using the 
non-scaled data indicates a divergence in estimates at higher prices (lower 
odds) which demonstrates the bias away from winning categories when data 
is imbalanced.

Diagnostics for the original test data and the up-sampled test data are 
provided in Table 3. The PLS model produces greater improved accuracy 
measures over the logistic regression approach as well as a superior G-mean 
metric.

To compare profitability profiles between models, we apply a simple flat 
staking betting strategy of $1 for each trade. We trade on the highest rating 
runner per race using the logistic regression model. We bet on runners whose 
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Figure 4. Cross-validated RMSEP curves for PLS regression (Australian 
thoroughbreds Jan 19 – Jun 20)

Figure 5. Cross-validated predictions for PLS regression (Australian thoroughbreds 
Jul 20 – Dec 21)

scores exceed a threshold equivalent to the 80th percentile for the PLS model. 
This means that for the PLS method, there are potentially multiple bets for 
some races and zero bets for other races. For comparison, we also use a naïve 
strategy of simply betting on the race favourite for each race. The trading 
results comparison is provided in Figure 7. Profitability from trades informed 
by the PLS approach clearly dominate alternative methods. Surprisingly, the 
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Table 3. Model diagnostics for logistic regression and partial least squares models 
using existing test data and up-sampled test data, Australian thoroughbreds 
2019–2021

Test statistic Log. regression (scaled) Partial least squares (scaled)

Accuracy 0.857 0.871

(95% CI) (0.855, 0.859) (0.868, 0.873)

Sensitivity 0.920 0.925

Specificity 0.325 0.328

Prevalence 0.894 0.916

Detection rate 0.827 0.840

Balanced accuracy 0.623 0.613

G-mean 0.547 0.551

Figure 6. Forecast price against traded starting price for up sampled (scaled) and 
the unscaled test data sets (truncated at a start price of $10)

naïve approach generates a profit over the testing period however the resulting 
return on investment makes this approach infeasible.

The profitability breakdown by price category (i.e., inverse odds) are 
provided in Table 4. All strategies are unprofitable using flat staking for 
prices less than $3.00 (odds 4:1 against). While there is a higher chance of 
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Figure 7. Profit/loss results for PLS versus logistic regression model and naïve 
methods using a flat staking strategy $1 per bet, Australian thoroughbreds Jul 
2020 – Dec 2021

earning a return at lower odds, the ability of the models to distinguish 
between winners predicted by the model versus those predicted by the market 
is relatively poor. At higher price categories (i.e., odds greater than 5:1 
against), profitability increases. Simply backing the favourite (the naïve 
strategy) is also unprofitable at lower odds and there are naturally lower 
profits available at higher odds.

The PLS model earns over half its profits in the $5–$10 price range (win 
probability of roughly 8.3–14.3 per cent) indicating that shorter priced 
favourites are often overpriced relative to the model choice. The logistic 
regression and naïve strategy profitability is highest in the $4–$5 price range 
(win probability of 14.3–16.6 per cent). 

Concerns over model degradation over time resulting in a loss of accuracy 
for either approach are addressed through the accuracy plot provided in  
Figure 8. The plot depicts the positive predictive value (precision) as win 
percentage for each month from July 2020 – December 2021 in the test  
data defined as TP/(TP+FP). While precision varies from month to month, 
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Table 4. Profitability by price category for PLS versus logistic regression model 
and naïve methods using a flat staking strategy $1 per bet, Australian 
thoroughbreds Jul 2020 – Dec 2021

Price Category Logistic R. % PLS % Naïve %

$1 – $2 –$10.80 –3.3% –$22.50 –4.0% –$11.50 –14.9%

$2 – $3 –$18.00 –5.6% –$22.80 –4.1% –$97.20 –125.9%

$3 – $4 $63.80 19.7% $140.80 25.1% $18.60 24.1%

$4 – $5 $174.20 53.8% $138.40 24.6% $159.50 206.6%

$5 – $10 $110.50 34.1% $327.80 58.4% $7.80 10.1%

$10 – $20 $60.00 18.5% $14.00 2.5% $– 0.0%

$20 – $50 –$38.00 –11.7% –$10.00 –1.8% $– 0.0%

$50 – $100 –$12.00 –3.7% –$3.00 –0.5% $– 0.0%

$100+ –$6.00 –1.9% –$1.00 –0.2% $– 0.0%

Figure 8. Precision (win % rate) for PLS versus logistic regression model by 
month in the test data, Australian thoroughbreds Jul 2020 – Dec 2021

there is no persistent rate of degradation over the 18-month test data series. 
The precision in the PLS model outperforms the logistic regression model in 
every month apart from August 2021 where the precision of the PLS approach 
fell to roughly 25 per cent of win predictions compared with 28 per cent for 
the logistic regression. 
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5  DISCUSSION

The benefits of the PLS approach extends to the use of many more variables 
than used in this analysis which can serve as ‘weak learners’ that incrementally 
improve the information content from large, complex, and interrelated data. 
The need to account for multicollinearity and interaction terms when using 
regression and other classifiers in complex data sets is avoided with the PLS 
approach. While PLS model outputs don’t directly attribute explanatory 
strength for features (variables) used to estimate principal components as they 
do in regression models, this is a small price to pay for the opportunity to 
improve model accuracy.

Probability estimates are greatly improved when accounting for imbalanced 
data using a relatively simple scaling (up sampling) process. Pre-processing 
data through bootstrapping the re-weighting towards winners avoids the 
arbitrary filtering techniques of post-processing methods such as adopting 
thresholds for selection or using hybrid methods that rely on learning ‘agents’ 
from alternative classifiers. While post-processing is a valuable tool for 
prediction in complex settings (e.g., weather forecasting, genomics, 
computational biology), the simple, but effective, method of up sampling 
winners achieves close alignment in estimated odds relative to market observed 
odds in thoroughbred racing. The simpler bootstrapping method also avoids 
issues of overfitting associated with post-processing methods.

The combination of principal decomposition and data scaling results in 
superior profitability and return on investment using a narrow data set for 
estimation. The accuracy can be shown to improve even further with data sets 
comprising many more features, but the incremental increase in accuracy 
rapidly diminishes. Profitability can also be enhanced through Kelly staking or 
proportional Kelly staking strategies, particularly when the PLS method is able 
to reliably identify winners offering higher market prices that represent a 
greater return on investment relative to a flat staking strategy.

6  SUMMARY

We have shown that the use of generalised principal component analysis to 
dissect data for trading strategies can deliver superior accuracy and profitability 
against existing methods. Also, simple up sampling of categorical data greatly 
improves accuracy at lower odds. A limitation of PLS in prediction is that its 
validity pertains to the conditions under which the observed data was obtained. 
While seasonality is apparent in racing (e.g., high profile runners prepare and 
compete for racing ‘carnivals’), its effects are generally assumed to be minimal. 
We did not detect degradation in accuracy due to seasonal effects in the test 
data. The persistence of factors and the accuracy of the PLS did not materially 
change when the model was trained on alternative periods or across seasons. 
Dimension reduction methods for large and complex data are robust and offer 
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improved accuracy, which should be considered for algorithmic selection 
strategies in similar settings.
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APPENDIX

Factors used in the analysis of racing data used for the logistic regression and 
PLS models.

•	 Number of starts 
•	 Days since last run 
•	 Days since second last run 
•	 Days since third last run 
•	 Win rate (% wins by starts)
•	 Place rate (% places by starts)
•	 Log transform of starting price in previous race
•	 Number of times won at current track 
•	 Differential rating between grades for this race against previous race
•	 Weight difference between this race and previous race
•	 Distance difference between this race and previous race
•	 Number of times won at current Grade 
•	 Finishing speed in previous 5 races (averaged)
•	 Horse’s rating in previous 5 races (averaged)
•	 Current jockey rating computed as % wins in previous 12 months
•	 Jockey rating differential between this race and previous race
•	 Average rating in first up runs, if last run ≥60 days 
•	 Number of times horse has competed against current class 
•	 Highest rating over the last 3 races
•	 Highest rating over the last 8 races
•	 Expected position in race (adjusted for distance, turns, barrier)
•	 Adjustment factor for wide barriers over track and distance 
•	 Quick back up (days since last run (DSLR) if DSLR≤10)
•	 Horse age if ≤3 years old competing in an open age race 
•	 Average pace over last 200m (previous 8 races)
•	 Odds (price) listed at start of racing day




