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LOGARITHMIC MARKET SCORING RULES FOR
MODULAR COMBINATORIAL INFORMATION

AGGREGATION

Robin Hanson†‡

Department of Economics, George Mason University

In practice, scoring rules elicit good probability estimates from individuals, while betting markets

elicit good consensus estimates from groups. Market scoring rules combine these features, eliciting

estimates from individuals or groups, with groups costing no more than individuals. Regarding a bet

on one event given another event, only logarithmic versions preserve the probability of the given

event. Logarithmic versions also preserve the conditional probabilities of other events, and so

preserve conditional independence relations. Given logarithmic rules that elicit relative probabilities

of base event pairs, it costs no more to elicit estimates on all combinations of these base events.

INTRODUCTION

In theory, probability elicitation is hard. For expected utility maximizers,

choices are jointly determined by utilities and probabilities, and so without

additional constraints on utilities or probabilities subjective probabilities

cannot be separated from event-dependent utilities (Kadane & Winkler,

1988). Some sophisticated approaches can in theory overcome this problem

(Jaffray & Karni, 1999). Yet in practice, less sophisticated uses of scoring

rules and related methods are widely and successfully used to elicit

informative event probabilities from individuals in weather forecasting

(Murphy & Winkler, 1984), economic forecasting (O’Carroll, 1977), risk

analysis (DeWispelare, Herren, & Clemen 1995), and the engineering of

intelligent computer systems (Druzdzel & van der Gaag, 1995). Furthermore,

simple conversational statements are often taken as reliable belief elicitations.

Given an ability to elicit probabilities, in theory it should be easy to induce

individuals to aggregate their information into common estimates.1 Given a

finite state space, Bayesians with a common prior who repeatedly state their

beliefs, and who have common knowledge about previous statements, must

eventually achieve common knowledge of future statements (Geanakoplos &

Polemarchakis, 1982), and thus common estimates (Aumann, 1976). Along

the way, Bayesians cannot even predict the direction in which others will

disagree with them (Hanson, 2002a). Even if they are tempted to strategically

lie along the way, repeatedly paying each Bayesian by a scoring rule should

also eventually produce a Nash equilibrium of this game (Kalai & Lehrer,

1993), and thus common knowledge of future statements. Similar results
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apply when common knowledge is replaced by common belief (Monderer &

Samet, 1989), and for “Bayesian wannabes” (Hanson, 2003).

In practice, however, repeated exchanges of human opinion in conversation

do not produce the degree of convergence that theory predicts for Bayesians

(Cowen & Hanson, 2002). Even so, speculative markets, such as stock,

commodities, and futures markets, seem to do a remarkable, if sometimes

incomplete, job of aggregating available relevant information into market

prices (Lo, 1997). Betting markets, in particular, create good probability

estimates (Hausch, Lo, & Ziemba, 1994). And this seems to be true even though

speculation in such markets seems to be irrational for most participants. For

example, orange juice futures prices improve on government weather forecasts

(Roll, 1984). Markets created within Hewlett-Packard Labs beat official

corporate sales forecasts 6 out of 8 times (Chen & Plott, 2002). The Iowa

Electronic Markets, which predict U.S. presidential elections, were more

accurate than major opinion polls in 451 out of 591 comparisons (Berg & Rietz,

2002). Horse race markets beat horse race experts (Figlewski, 1979). Even play

money markets have done well at forecasting movie returns and scientific

progress (Pennock, Giles, & Nielsen, 2001).

Since theory has not been a completely reliable guide here, perhaps we

should look to the empirical successes of scoring rules and betting markets,

and try to combine the best of these two approaches while avoiding their

failings. In this spirit, this paper introduces market scoring rules, which are

intended to be such a combination.

Simple scoring rules do not induce different individuals to form common

estimates, while simple betting markets cannot create price estimates unless

several people coordinate to bet on the same event, and it seems irrational to

participate in most bettingmarkets. Market scoring rules, in contrast, act like

simple scoring rules when one person estimates the chances for some set of

events, yet can also act like a subsidized betting market with which many people

can and rationally should repeatedly interact to produce common estimates.

With a simple scoring rule, a person reports event probabilities, and his

reward depends on how close his reports were to the actual events. Market

scoring rules are scoring rules where anyone can change the current report,

and be paid according to theirnew report, as long as he or she agrees to pay the

last person reporting according to that last person’s report. This in effect lets

anyone make any infinitesimal fair bet at the odds in the last report, and make

any integral of such bets through changing betting odds. The cost to create a

market scoring rule depends only on the informativeness of the final report

given it, realtive to its starting position, and does not otherwise depend on how

often or how many people use it. In contrast with a standard betting market,

rational agents should expect a positive profit from participating, and do not

need to find another person willing to make a matching bet.

There are a vast number of events about which one might want probability

estimates. There are not only many simple events, but there are far more

possible combinations of these simple events. How does the cost of a market
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scoring rule depend on the number of events it covers? Also, how modular can

making changes be? That is, if different people specialize in estimating

different events, how easily can each person make changes to estimates where

they think they have expertise, while minimizing unintended changes to other

estimates?

These considerations reflect favorably on logarithmic versions of market

scoring rules. Once one has paid to create logarithmic rules on some base set

of event pairs, there is no additional cost to having that single rule that applies

to all possible combinations of those base events. Furthermore, if someone

makes a bet with a logarithmic rule on the conditional probability of one event

given another, the probability of the given event does not change, nor do the

conditional probabilities of further events. Logarithmic rules thus only change

the probabilities of events where the person betting took a risk on that event.

This supports the use of conditional independence relations, a popular

mechanism humans use to manage the complexity of large probability spaces.

With logarithmic rules, bets on some events do not change conditional

independence relations between other events.

For example, given logarithmic rules that induce estimates of the chance

of rain Monday, the chance of rain Tuesday, and the chance of rain

Wednesday, it costs no more to also induce estimates such as whether it will

rain Tuesday and Wednesday given that it rains Monday. And if someone bets

that it will rain Tuesday given that it rains Monday, this bet will not change the

estimated chance of rain Monday. If current estimates say that the chance of

rain Wednesday is independent of Monday’s chance, given Tuesday’s chance,

a bet on rain Tuesday given rain Monday also will not change this

independence relation.

This paper will first review scoring rules, and then discuss market scoring

rules, their costs, and their modularity.

SCORING RULES

Consider an expected-utility maximizing agent with subjective beliefs pi

regarding a complete set of I disjoint events i, where
P

i pi[I ¼ 1. This agent

might be paid a cash amount x according to a proper scoring rule xi ¼ sið~rÞ

(Savage, 1971). Here xi is the cash payment if i turns out to be the actual event,

ri is the probability the agent reports for the event i, and ~r ¼ {ri}i is the full

report. When ~s ¼ {si}i constitutes a proper2 scoring rule, an agent who sets his

reports ri to maximize his expected monetary payoff will honestly report

ri ¼ pi. That is,

~p ¼ argmax ~r
i

X
pixi ¼

i

X
pisið~rÞ given

i

X
ri ¼ 1:

Expected monetary payoff will be maximized by risk-neutral agents with

event-independent utility. Other agents can also be induced to maximize an
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expected monetary payoff.3 Scoring rules can also give agents incentives to

acquire information they would not otherwise possess (Clemen, 2002).

First and second order conditions for this maximization are that for all

events j,

l ¼
i

X
pi7jsið ~pÞð1Þ

0 $
i

X
pi7j7jsið ~pÞð2Þ

where l is a Lagrange multiplier, and 7j is a partial derivative operator with

respect to component j. Differentiating this first order condition with respect

to pk, and applying 7k7j ¼ 7j7k, gives 7jsi ¼ 7isj, which implies sið~rÞ ¼

7igð~rÞ for some function gð~rÞ (Williamson, Corwell, & Trotter, 1972). The

function gð~rÞ turns out to be the part of an agent’s equilibrium expected payoff

that depends on his report ~r (Savage, 1971).

Examples of proper scoring rules include

Quadratic si ¼ ai þ bri 2 b
j

X
r2

j =2;

Spherical si ¼ ai þ bri=
j

X
r2

j

0
@

1
A1=2;

Logarithmic si ¼ ai þ b logðriÞ;

Power Law si ¼ ai þ ba

ðri

0

ra22
i dri 2 b

j

X
raj

Power law rules are proper scoring rules for a $ 1 (Selten, 1998), and both

the quadratic (Brier, 1950) and logarithmic rules (Good, 1952) are special

cases of this, for a of 2 and 1 respectively.

The quadratic rule satisfies a number of desirable properties (Selten,

1998). The logarithmic rule also satisfies desirable properties (von Holstein,

1970). For example, it is the only rule satisfying the constraint 7jsi ¼ 1ijni for

some ni (where 1ij ¼ 1 when i ¼ j and 0 otherwise), which implies

sið~rÞ ¼ siðriÞ, i.e., that an agent’s payoff depends only on the probability he

assigned to the actual event (Savage, 1971). This rule is thus the only one that

can simultaneously reward agents and evaluate them via standard likelihood

methods (Winkler, 1969).

It can be convenient to extend scoring rules sið~rÞ, defined so far for

normalized ~r satisfying
P

iri ¼ 1, to cases where
P

iri – 1. This can be done

by substituting ri=
P

jrj for ri. For example, the extended logarithmic rule is

si ¼ ai þ bilogðri=
P

jrjÞ. An equivalent approach is to require, for all positive

a, that ~sða~rÞ ¼ ~sð~rÞ. This implies 0 # 7i7ig and 0 ¼
P

ipi7i7jg, and that
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l ¼ 0 in equation 1. For example, for the extended logarithmic rule,

gð~rÞ ¼ b
P

irilogðri=
P

jrjÞ.

MARKET SCORING RULES

In many existing markets, all trades are made with one or a few central

actors called market makers. These actors always have public offers to buy or

to sell, and update these prices in response to trades. Human market makers

have been found to do as well as the standard double auction market form at

aggregating information (Krahnen & Weber, 1999). For the price of a modest

subsidy, automated market makers can also play this role in supporting trade.

For example, automated market makers have been used successfully by the

Hollywood Stock Exchange (www.hsx.com) to promote speculation on the

prospects of thousands of movies and movie stars.

It has long been known that in one dimension, allowing an agent to

interact with a proper scoring rules is equivalent to allowing him to choose a

quantity from a continuous offer demand schedule (Savage, 1971). This paper

shows how this equivalence also holds in higher dimensions. A simple scoring

rule variation, the market scoring rule, acts like a continuous automatic market

maker with which an arbitrary number of agents can have an arbitrary number

of interactions, at no additional cost over that of the one final interaction.

For any scoring rule sið~rÞ, an agent should voluntarily agree to accept a

payment of the form

xi ¼ Dsið~r; ~rÞ ¼ sið~rÞ2 sið ~rÞ

for any value of ~r. After all, an agent can ensure himself no effect (~x ¼ 0) by

setting ~r ¼ ~r, and expects a positive (and maximal) profit if he sets ~r ¼ ~p – ~r

(all normalized), where ~p is his beliefs. Thus if we repeatedly set ~r to the last

report made, an arbitrary number of agents can be allowed an arbitrary

number of interactions. That is, let agents make their reports ~rt one at a time to

a market scoring rule, where each report is paid xit ¼ Dsið~rt; ~rt21Þ, with ~r0 an

initial reference report. The total cost to pay for T reports,

xi ¼
XT

t¼1

xit ¼
XT

t¼1

ðsið~rtÞ2 sð~rt21ÞÞ ¼ sið~rTÞ2 sð~r0Þ;

depends only on the initial and final reports, and is thus the same as the cost for

one final report with the same final values ri.

Not only can the total movement from ~r0 and ~rT be split at no additional

cost into smaller movements from ~rt21 to ~rT , each smaller movement can be

thought of an integral of infinitesimal movements d~r along a line of

changing reports ~rðtÞ as t varies continuously. If an agent changes his report at

a rate of qi ¼ dri=dt, the rate of change in his asset amounts are

yi ¼ dxi=dt ¼
P

jqj7jsi. When this agent has beliefs ~p, the rate of change in

LOGARITHMIC MARKET SCORING RULES

7

http://www.hsx.com


Copyright © 2007 The University of Buckingham Press
All rights reserved

his expected payoff is thus

d

dt i

X
pixi ¼

i

X
piyi ¼

i

X
pi

j

X
qjsið~rÞ ¼

j

X
qj

i

X
pi7jsið~rÞ

0
@

1
A:

When ~r ¼ ~p, this last term in parentheses is zero according to the first order

condition (equation 1). Thus the first order condition is really a local “fair bet”

condition, saying that the assets exchanged as one changes one’s report are

locally a fair (i.e., zero expected value) bet at the current “market” prices ~r. An

agent pays assets of theform “Pays $1 if event i holds” in exchange for other

assets of the same form.

We can thus think of a market scoring rule as a continuous inventory-

based automated market maker. Such a market maker has a zero bid-ask

spread, at least for infinitesimal trades, has an internal state described entirely

by its inventory of assets ~x, and offers an instantaneous price of ~p ¼ ~mð~xÞ,

where
P

i mið~xÞ ¼ 1. That is, such a market maker will accept any “fair bet”

infinitesimal trade d~x ¼ ~ydt, such that

i

X
yimið~xÞ ¼ 0;ð3Þ

and accept any finite trade that is an integral of such infinitesimal trades.

The main task of any market maker is to extract the information implicit in

the trades others make with it, in order to infer new rational prices (O’Hara,

1997). In response to an infinitesimal trade, the “inference rule” of a market

scoring rule is 7imj, which determines fair price changes via

dpi=dt ¼ qi ¼
P

jyj7jmi. This inference rule should satisfy 7imi , 0 to

compensate for an expected adverse selection in trades. That is, people buying

suggests that the market maker’s price is probably too low, and people selling

suggests the price is probably too high.

Market scoring rules produce consensus estimates in the same way that

betting markets produce consensus estimates. While each person is always

free to change the current estimate, doing so can require taking on more risk,

and eventually everyone reaches a point where they do not want to make

further changes, at least not until they receive further information. At this

point the market can be said to be in equilibrium.

We can extend mð~xÞ to all possible ~x by requiring that ~mð~x þ a~1Þ ¼ ~mð~xÞ

for all a, where ~1 ¼ {1}i. This says that changing the cash reserves of a

market maker does not change its prices. This and
P

imi ¼ 1 imply

i

X
7imj ¼ 0ð4Þ

i

X
7jmi ¼ 0:ð5Þ
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The market maker ~m that is equivalent to a particular proper scoring rule then

satisfies ~p ¼ ~mð2~sð ~pÞÞ when
P

i pi ¼ 1. The negative sign is because an

agent’s gains are the market maker’s losses. For example, a logarithmic

scoring rule si ¼ ai þ blogðpiÞ corresponds to an exponential market maker

mið~xÞ ¼
expðð2ai 2 xiÞ=bÞP

jexpðð2aj 2 xjÞ=bÞ
;ð6Þ

which is characterized by the differential equation

7imj ¼ 2mið1ij 2 mjÞ=b:ð7Þ

Note that an equivalence between these market makers and scoring rules

ensures that such a market maker cannot be exploited for arbitrarily large

profits; traders can as a group only take what they could get by making some

report ~r to the equivalent proper scoring rule.

COSTS OF MARKET SCORING RULES

The net assets given to all the agents who interact with a market scoring

rule is xi ¼ sið~rTÞ2 sð~r0Þ, where ~rT is the last report made, and ~r0 is an initial

reference report. A patron funding the scoring rule minimizes her expected

payments by setting the initial report to her initial beliefs ~p, as in ~r0 ¼ ~p.

In the extreme case where agents eventually become sure of the actual

state i, the principal’s expected payment is
P

ipiDsið~1i; ~pÞ, where ~1i ¼ {1ij}j.

For the logarithmic scoring rule, this maximum expected payment is the

entropy, 2b
P

ipilogðpiÞ, of the initial distribution ~p. In less than extreme

cases, if the principal accepts the probabilities estimates of the final report, her

expected payment is proportional to the difference between the entropies of

the initial and final distributions. (For the quadratic scoring rule, the maximum

expected payment is b 2 b
P

ip
2
i .) Of course these cost calculations neglect

costs to communicate current prices, to compute price and asset changes, and

to implement transactions.

A space of possible events i might be constructed as the combinatorial

product space of N base variables n, each of which has Vn possible values v. In

this case there would be I ¼
Q

n[N Vn possible events i, and events could be

written as i ¼ {vn}n, where vn is a particular value of base variable n. If agents

reported only on the probability of base variable values, they would make

reports rnv such that
P

v[Vn
rnv ¼ 1. These base-only reports would have a

maximum expected cost of
P

nvpnv~svð~1v; ~pnÞ, where pnv is a sum of pi over

events i which satisfy vn ¼ v. For the logarithmic scoring rule, the maximum

expected cost for the full combinatorial report ~r ¼ {ri}i, which reports on the

probability of all base variable value combinations, is no more than the cost

for the base-only reports, at least when the parameter b is held constant. After

all, it is well known that the entropy of any full distribution is no more than the

sum of the entropies of its marginal distributions.
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While there is no direct additional financial cost to funding combinatorial

reports, it remains difficult to bound the computational cost of updating prices

and assets. The computational complexity of such updates can be large, being

worse than polynomial in the worst case (i.e., is NP-complete) (Cooper, 1990).

It remains an open question how to devise market scoring rules that minimize

such computational costs.

MODULARITY OF MARKET SCORING RULES

There are a vast number of events, combinatorial and otherwise, for which

one might want probability estimates. An important practical consideration

for market scoring rules is thus how well they help people manage large event

spaces, and help people change the estimates where they think they have

relative expertise, while minimizing unintended and uninformed changes to

other estimates.

These considerations can be formalized in terms of how well trade

regarding some events preserves conditional independence relations regarding

other events. Conditional independence is a central tool for managing

complex probability distributions. For variables A,B,C, we say that in

distribution P, variable A is independent of C given B, and write IðA;B; CÞ,
when

PðAijBjCkÞ ¼ PðAijBjÞ

for all values Ai of A, Bj of B, and Ck of C. (IðA;B; CÞ implies IðC;B;AÞ).

Humans often find it difficult to state probability estimates, yet can typically

express conditional independence relations quickly and confidently. Humans

also change probability estimates more often than they change estimated

independence relations. Such relations typically determine a sparse graph of

related events, producing a vast reduction in the dimensionality of the

resulting probability space. Humans can also frequently locate their areas of

relative expertise within such graphs (Pearl, 1988; Pennock & Wellman,

2000).

Consider the case of an agent who bets with a market scoring rule, and

bets only on the event A given the event B. That is, this agent gains assets of

the form “Pays $1 if A and B hold”, in trade for assets of the form “Pays $1 if B

holds and A does not. Recall that yi ¼ dxi=dt. If we describe these events A

and B as sets of finer events i, this implies yi ¼ yj for all i; j [ A > B, yi ¼ yj

for all i; j [ �A > B (where �A denotes the complement of A), and yi ¼ 0 for all

i [ �B. In general, depending on the particular market scoring rule, such a

bet might change any probability estimate pi, and thus change any

event probability pðCÞ ¼
P

i[C pi. It seems preferable, however, for this

bet to change as little as possible besides pðAjBÞ (and of course

pð �AjBÞ ¼ 1 2 pðAjBÞ).
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That is, the market maker’s inference rule should assume that a new bet on

A given B in general gives it new information only about how the event A

might depend on the event B, but no information on the probability of B, or on

events unrelated to how A might depend on B. For such unrelated events,

previous independence relations should be preserved.

The logarithmic market scoring rule is local in this strong sense. Consider

binary variables A,B,C, with values A; �A for A, values B; �B for B, and values

C; �C for C. We can prove the following (proofs in the Appendix).

Theorem 1 Logarithmic rule bets on A given B preserve pðBÞ, and for any

event C preserve pðCjABÞ, pðCj �ABÞ, and pðCj �BÞ, and thus preserve I(A,B,C),

and I(B,A,C).

When there are at least three events i, the inverse also holds; the logarithmic

market scoring rule is the only local rule, even in the weak sense that a bet on

A given B preserves pðBÞ. Any rule that satisfies this constraint must doso in

the simplest case of only two events. In this simple case, A ¼ { j}, B ¼ { j; k},
only dxj and dxk are non-zero, and only dpj and dpk should be non-zero. We

can prove that only the logarithmic rule satisfies this constraint.

Theorem 2 For I $ 3, if yi ¼ 0 for i � { j; k} implies qi ¼ 0 for i � { j; k},
the rule is logarithmic.

Thus the logarithmic market scoring rule is unique in having a local

inference rule. When someone makes a bet on A conditional on B, and hence

takes no risk regarding whether B is true, all other market scoring rules will

sometimes change their estimate of the probability of B. The logarithmic rule,

in contrast, not only preserves pðBÞ, but also preserves pðCjABÞ, pðCj �ABÞ, and

pðCj �BÞ for all events C.

CONCLUSION

Simple scoring rules are regularly used to elicit probability estimates from

individuals, and more sophisticated versions are available if needed to deal

with risk-aversion and state-dependent utility. In theory, repeatedly eliciting

and announcing individual estimates should be sufficient to induce common

estimates, but in practice estimate differences remain. In practice, however,

standard betting markets do often elicit common estimates that seem to

aggregate individual information well, even though participation seems

irrational and requires a coordination of trading activity.

With a simple scoring rule, a person reports a probability for each event,

and gets paid depending on that report and the actual event. Market scoring

rules are scoring rules where anyone can change the official report, and be

paid according to that new report, as long as they are willing to pay the last
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person reporting according to their report. This in effect lets anyone make any

infinitesimal fair bet at the odds in the last report, with no need to find another

person willing to make a matching bet,as in ordinary betting markets. Market

scoring rules thus combine the advantages of both simple scoring rules and

betting markets, inducing both individuals to make estimates and to combine

them into a common estimate.

Market scoring rules cost no more to implement than simple scoring rules.

The cost does depend on the number of base events for which probability

estimates are invited, but for logarithmic rules there is no additional cost to

elicit estimates on all combinations of these base events. The logarithmic rule

is also unique in making very local inferences from the trades it sees;

regarding a bet on one event given another event, only a logarithmic rule

preserves the probability of the given event. Logarithmic versions also

preserve the conditional probabilities of further events, and so preserve

conditional independence relations.

The computational costs of updating market scoring rules in

combinatorial event spaces can be large, however, and it remains an open

question how to best minimize and allocate such costs.

APPENDIX

Proof of Theorem 1

Logarithmic market scoring rules are exponential market makers which

satisfy equation 7. For a bet on A given B, yi ¼ dxi=dt ¼ 0 for i [ �B. Putting

these together, for i [ �B, we have

dpi=dt ¼
j

X
yj7jmi ¼ 2mi

j

X
yj1ij=b þ mi

j

X
yjmj=b:

The first sum is zero because yi ¼ 0, and the second sum is zero by the

fair bet equation 3. Thus the pð �BÞ ¼
P

i[ �Bpi does not change, nor does

pðBÞ ¼ 1 2 pð �BÞ.

According to equation 6, a transition from old prices pi to new prices p
0

i

due to asset changes Dxi satisfies p0i ¼ piKexpð2Dxi=bÞ, for some KðD~xÞ.

Thus

p0ðCjABÞ ¼

P
i[A>B>Cp0iP

i[A>Bp0
i

¼

P
i[A>B>CpiKexpð2Dxi=bÞP

i[A>BpiKexpð2Dxi=bÞ

¼

P
i[A>B>CpiP

i[A>Bpi

¼ pðCjABÞ;

since Dxi is the same everywhere within A > B. Since Dxi is also the same

everywhere within �A > B and within �B, p0ðCj �ABÞ ¼ pðCj �ABÞ and p0ðCj �BÞ ¼
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pðCj �BÞ as well. Thus the logarithmic rule preserves PðCjABÞ, PðCj �ABÞ, and

PðCj �BÞ for any C.

For a binary variable C, we can write PðAjBCÞ ¼ PðAjBÞ as

PðAjBCÞ ¼ PðAjB �CÞ. For binary variables, IðA;B; CÞ (equivalent to

IðC;B;AÞ) requires pðCjABÞ ¼ pðCj �ABÞ and pðCjA �BÞ ¼ pðCj �A �BÞ, and

similarly for �C instead of C. A logarithmic rule preserves pðCjABÞ ¼

pðCj �ABÞ by preserving each side of this equation. A logarithmic rule also

preserves both sides of pðCjA �BÞ ¼ pðCj �A �BÞ because, for example,

pðCjA �BÞ ¼ pðCAj �BÞ=PðAj �BÞ, and both numerator and denominator here are

of the form pðDj �BÞ that is preserved. I(B,A,C) (equivalent to I(C,A,B))

requires pðCjABÞ ¼ pðCjA �BÞ and pðCj �ABÞ ¼ pðCj �A �BÞ, and similarly for �C

instead of C. But all of these forms are similarly preserved by a logarithmic

rule. QED.

Proof of Theorem 2

Let the events j, k be 1; 2. Since we’ve assumed yi ¼ 0 for i � {1;2}, the

fair bet equation (3) requires
P

iyimi ¼ y1m1 þ y2m2 ¼ 0. By assumption,

when this is true we must have, for i � {1;2}, 0 ¼ qi ¼ y171mi þ y271mi.

These together imply

71mi

m1
¼

72mi

m2
:

Since our choice of 1; 2 as the non-zero variables here was arbitrary, we can

call the value of this equation hið~xÞ. Thus for all i – j we have 7jmi ¼ mjhi.

For i ¼ j we can define a residual mi from this expression, as in

7imi ¼ himi þ mimið~xÞ. Substituting these last two equations into equation 4

gives hj ¼ 2mimj, which implies that mi ¼ m, independent of i. This fact

allows us to write, for all i, j,

7imj ¼ mmið1ij 2 mjÞ:ð8Þ

If we knew m to be a constant function, this would be the same as the

differential equation (7) that characterizes the logarithmic rule, and so we

would be done. We can show that m is constant by substituting equation 8 into

this equation

7k7imj ¼ 7i7kmj;ð9Þ

which must hold for all functions m. Considering the case i – j – k gives

ð7kmÞ=mk ¼ ð7imÞ=mi, which implies 7im ¼ mih for some hð~xÞ. Substituting

equation 8 into equation 9 and summing over j, k gives
P

k7km ¼ 0. These

together imply n ¼ 0, which makes m constant. QED.
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NOTES

1. This can be true even if directly combining probability distributions is more difficult Genest & Zidek
(1986).

2. For a non-proper scoring rule, other reports also maximize an agent’s expected payoff.
3. Agents paid in tickets for a lottery with extreme consequences should maximize expected payoff if their

utilities approach common lower and upper bounds, Jaffray & Karni (1999). Bayesians paid in lottery
tickets after playing a certain insurance game should maximize their expected payoff relative to their
objective beliefs, which are what they would believe had they updated a known common prior with their
further personal information Hanson (2002b).
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