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This paper compares two approaches to predicting outcomes in a speculative market, the horserace

betting market. In particular, the nature of one- and two-step conditional logit procedures involving a

process for exploding the choice set are outlined, their strengths and weaknesses are compared and

their relative effectiveness is evaluated by predicting winning probabilities for horse races at a UK

racetrack. The models incorporate variables which are widely recognised as having predictive power

and which should therefore be effectively discounted in market odds. Despite this handicap, both

approaches produce probability estimates which can be used to earn positive returns, but the two-step

approach yields substantially higher profits.

I. INTRODUCTION

Establishing the extent to which a financial market incorporates

information provides important clues to the manner in which it operates and

it is widely recognised that horserace betting markets, which share many

features in common with wider financial markets, can provide a valuable

window on speculative market behaviour (e.g. Snyder, 1978; Hong and Chiu,

1988; Law and Peel, 2002). Sauer (1998, p 2021), for example, observes:

“wagering markets are especially simple financial markets, in

which the pricing problem is reduced. As a result, wagering

markets can provide a clear view of pricing issues which are

complicated elsewhere.”

Two of the distinctive features of horserace betting markets which make it

possible to understand behaviour more clearly than in other financial markets

is the generation of an unequivocal outcome (a winner) within a definitive

period and the availability of a large number of essentially similar markets

(races) for analysis. These features enable market efficiency to be tested by

measuring the appropriateness of the asset’s price (market odds) against race

outcome. As a result, an extensive literature has developed addressing weak-,

semi-strong- and strong-form efficiency in horserace betting markets.

However, there have been relatively few studies exploring the extent to

which horserace bettors discount, in market odds, a combination of
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fundamental variables associated with horses, their jockeys and trainers and

the race conditions. The majority of these studies employ a one-step

modelling process which involves regressing measures of past performance

(e.g. past finish position) on information derived from fundamental variables

alongside market generated probabilities (e.g. Bolton and Chapman, 1986;

Chapman, 1994; Gu, Huang and Benter, 2003). However, Benter (1994)

advocated the use of a two-step procedure, which involves developing a

model based solely on fundamental variables to predict winning probabilities.

These probabilities are then used as inputs to a second stage model which also

incorporates market generated probabilities. He argues that such a process

produces more accurate predictions. Benter’s highly successful betting

operation in Hong Kong provides anecdotal evidence to support this view and

two stage models developed by Edelman (2003) and Sung, Johnson and Bruce

(2005) have produced encouraging results. However, to date no comparison of

the accuracy of winning probabilities from one- and two-step modelling

procedures has been undertaken. This is clearly an important omission, since a

modelling technique which captures the full information content of

fundamental and market-generated variables is more likely to demonstrate

the true degree of market efficiency. This paper aims to fill this important gap

by evaluating the effectiveness of these two modelling approaches in

predicting winning probabilities at a racetrack in the UK and their ability to

reveal market inefficiency.

To achieve this, the paper is structured as follows: The one- and two-step

modelling procedures on which this study focuses are outlined in section II,

along with their relative strengths and weaknesses. The data and explanatory

variables used to develop parallel one- and two-step models are described and

justified in section III, together with the procedures used to assess the relative

predictive power of these two approaches. In section IV, the results of model

estimation and out-of-sample testing are reported and discussed. Some

implications and conclusions are developed in section V.

II. ONE- AND TWO-STEP MODELLING

(a) One- and Two-step Conditional Logit Modelling Procedures

The modelling procedure which forms the basis of the one- and two-step

procedures which are compared here is the most widely used in assessing the

degree of semi-strong-form efficiency in racetrack betting markets, namely,

conditional logit. The aim of a conditional logit model is to predict a vector of

winning probabilities pe
ij ¼ ð pe

1j; p
e
2j; . . . ; pe

njj
Þ for race j, where pe

ij is the

estimated model probability of horse i winning race j and nj is the number of

horses in the race j. These probabilities are estimated on the basis of a vector

of m variables: xij ¼ ½xijð1Þ; . . . ; xijðmÞ�, capturing information associated

with each horse. Since horse races are competitive, an efficient probability

estimate of horse i’s chance of winning race j is more likely to be obtained if
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its chance of winning is regarded as being conditional on the information

available for the other runners in race j. To achieve this, a ‘winningness index’

Wij for horse i in race j is defined as follows:

Wij ¼
Xm

k¼1
bkxijðkÞ þ 1ijð1Þ

where bk is a coefficient which measures the relative contribution of

information xij(k) to horse i’s chance of winning and 1ij is unperceived

information. If Wij is defined such that the horse with the highest value of the

index wins race j then it can be shown that, if error terms 1ij are independent

and distributed according to the double exponential distribution, the

probability of horse i winning race j is given by the following conditional

logit function (McFadden, 1974):

pe
ij ¼

exp
Pm

k¼1bkxijðkÞ
� �

Pnj

i¼1 exp
Pm

k¼1bkxijðkÞ
� �ð2Þ

where the bk are estimated using maximum likelihood procedures. The

conditional logit model has been successfully employed for a range of discrete

choice problems (McFadden, 1974) including a number of studies estimating

the winning probability of racehorses (e.g. Figlewski, 1979; Bolton and

Chapman, 1986; Edelman, 2003).

The one- and two-step procedures differ in terms of when and how

fundamental information concerning the previous performances and

preferences of the horse, its jockey or trainer and race conditions (represented

below in equation (3) as m 2 1 fundamental variables, yij(k)) are combined

with market-generated information (usually employed in the form of

normalised probabilities derived from closing market odds, ps
ij). In a one-step

procedure the two types of information are combined in a single conditional

logit model of the following form:

pe
ij ¼

exp bbm lnps
ij þ

Pm21
k¼1 bkyijðkÞc

Pnj

i¼1 exp bm lnps
ij þ

Pm21
k¼1 bkyijðkÞ

h ið3Þ

Benter (1994) was the first to develop a computer model for predicting

winning probabilities of horses in two-steps. The two-step procedure involves

first developing a conditional logit function of the form given in equation (2),

and simply employing the m 2 1 fundamental variables yij(k) (Benter, 1994).

This provides an estimate of the probability of horse i winning race j, p
f

ij ,

which is based solely on the fundamental variables. However, according to

Benter (1994), the fundamental probability consistently diverges from the

observed win percentage for each odds category. As a result, an adjustment

from the fundamental probability to the unobserved true winning chance of a

horse is necessary. Consequently, a second-step is required, incorporating the

natural logarithm of the fundamental model probability, ln ðp
f

ij Þ, as well as
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the natural logarithm of the normalised closing odds probability, ln ðps
ijÞ, based

on a second set of races. Consequently, the final estimated model probability

for horse i in race j is obtained as follows:

pe
ij ¼

exp a ln ps
ij

� �
þ g ln p

f
ij

� �� �

Pnj

i¼1 exp a ln ps
ij

� �
þ g ln p

f
ij

� �� �ð4Þ

where a and g are parameters to be estimated using maximum likelihood

procedures. The second-step model is designed to capture the subtle

relationship between these two explanatory variables and the outcome of a

race.

(b) Strengths and Weaknesses of One- and Two-step Conditional Logit

Modelling

In order to test the hypothesis that racetrack betting market is semi-strong

form efficient, it is clearly necessary to develop a model which combines both

fundamental and market-generated information. The merits of combining this

information in a one-step model are not only its simplicity but also the

opportunity it affords for examining the significance of each individual

fundamental variable in an explicit manner; since probabilities derived from

the final market odds also appear in the model. This facilitates understanding

of how bettors utilise publicly available information. In particular, the

fundamental information which has been ignored or under-weighted by the

betting public can be identified. Another technical advantage of the one-step

modelling process is that it permits the use of a larger training sample and this

can improve model accuracy. This is particularly true for a conditional logit

model as it treats one race rather than one horse as an observation during

estimation. The two-step modelling procedure, on the other hand, requires that

the training sample is split in two, one for each step; this is required in order to

overcome the potential problem of over-fitting (Benter, 1994). The one-step

model might therefore have particular merit when only a limited sample of

races is available for analysis.

Despite the potential benefits of the one-step procedure indicated above, it

could also be argued that combining all the fundamental variables with the

odds variable may result in counterintuitive signs for the model parameters

due to the variables being highly correlated. This may increase the difficulty

of interpreting the results (Benter, 1994). A second important practical

difficulty associated with the one-step process is that in order to use the

probabilities generated by this process to bet it is necessary to have a good

estimate of the final market odds. Benter (1994) suggests that these can be

obtained from market odds prevailing one or two minutes prior to the start of

the race. However, this would not allow sufficient time in which to run a

complete model incorporating all fundamental variables and a variable

derived from final odds estimates, and then place the bet. It can, therefore, be
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argued that the one-stepmodelwould bemore difficult to implement in real time.

Step one of the two-step model procedure involves estimating the probability

derived from fundamental variables; these data are available several hours before

the race begins. Step two,which combines probability estimates derived from the

fundamentalmodel and from thefinalmarket odds (or those prevailingoneor two

minutes before the race start) could be developed in a few seconds, which would

permit the model probabilities to be used to bet. This may therefore represent a

more practical method for implementing a betting strategy in real time.

Therefore, it could be argued that the two-stepmodel is the onewhich really tests

whether a market is inefficient.

The two-step modelling procedure clearly offers some important

advantages over a one-step procedure but it can only be used to examine

the collective significance of all the fundamental information (by observing

the significance level of the coefficient of the fundamental probability term in

the second-stage model); the marginal significance of each of the individual

fundamental variables cannot be discerned.

As discussed, both the one- and two-step modelling procedures have their

own strengths and weaknesses. However, there has been no investigation

which compares the predictive power of these modelling approaches. The next

section outlines the data and procedures employed here to undertake such an

investigation.

III. DATA AND PROCEDURES

(a) Data

One of the distinguishing features of a good model for making probability

predictions is that it is able to extract the full value from underlying

information. In particular, to make an accurate assessment of horserace

betting market efficiency, it is vital that the model fully utilises the

fundamental and market-generated information. In this regard, in order to set a

difficult test for the one- and two-step modelling procedures evaluated here, it

was decided to limit the set of fundamental variables included in the models to

those included in Bolton and Chapman’s (1986) seminal paper on multi-

covariate modelling in a horseracing context. This paper inspired several other

researchers and practitioners to develop more sophisticated models (the most

notable and successful example being Benter (1994)). It is clear, therefore,

that the fundamental variable set which Bolton and Chapman (1986)

employed has been in the public domain for a considerable period and

according to the efficient market hypothesis it is likely that the betting public

now discounts much of this information in market odds. Consequently, a

modelling procedure which is able to use information extracted from this

fundamental variable set to make predictions which yield abnormal returns

might be regarded as of particular merit. A full list of the variable set used in

the current study is given in Table 1.
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Bolton and Chapman’s (1986) study predicted winning probabilities at US

racetracks whose topography, configuration and surface are highly

standardised, whereas the current study employs data from the UK where

racetracks are far less uniform. Consequently, to minimise this discrepancy,

data is drawn from races run at one racetrack, Wolverhampton, whose

configuration, topology and surface are similar to that of the US tracks. The

dataset contained details of 16431 horses which ran in 1675 flat races during

the period January 1995 to August 2000. The number of horses in each race

varies from 2 to 13, with a mode of 12. The final market odds for horses in the

sample range from 0.17/1 to 100/1 with a mean value of 13.64/1.

The dataset is split into two parts. The first part, involving 1110 races

(10856 horses) run between January 1995 and December 1998, is used to

develop the conditional logit models. The second part, involving 565 races

(5575 horses) run between December 1998 and August 2000, is preserved for

out-of-sample testing. The one-step model is estimated using all the

observations in the training dataset, but the two-step model requires the

training dataset to be further divided: the fundamental model being estimated

using races run between January 1995 and December 1996 (555 races, 5524

horses) and the model combining fundamental model probabilities and

market-generated probabilities being estimated using races run between

December 1996 and December 1998 (555 races, 5332 horses).

The UK betting market consists of parallel bookmaker and pari-mutuel

markets with odds being generated in both markets. However, the bookmaker

TABLE 1

DEFINITIONS OF THE INDEPENDENT VARIABLES EMPLOYED IN THE ONE- AND

TWO-STEP MODELS

Independent variable Variable definitions

Market-generated variable

ln ðps
ijÞ The natural logarithm of the normalised final odds probability

Fundamental variables

pre_s_ra Speed rating for the previous race in which the horse ran

avgsr4 The average of a horse’s speed rating in its last 4 races; zero when

there is no past run

draw Post-position in current race

eps Total prize money earnings (finishing first, second or third) to

date/Number of races entered

newdis 1 indicates a horse that ran three or four of its last four races at a

distance of 80% less than current distance, and 0 otherwise

weight Weight carried by the horse in current race

win_run The percentage of the races won by the horse in its career

jnowin The number of wins by the jockey in career to date of race

jwinper The winning percentage of the jockey in career to date of race

jst1miss 1 indicates when the other jockey variables are missing; 0 otherwise
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market is by far the larger and it has been suggested that informed bettors are

more likely to bet in this market (e.g. Bruce and Johnson, 2005).

Consequently, in this study, final market odds in the bookmaker market are

used for model development.

(b) Procedures

The sample involves a choice set of observations, whereby ‘nature’

chooses a winner of each race but the sample size (555 races) is relatively

small. In traditional conditional logit modelling only information concerning

which horse wins the race is employed but Chapman and Staelin (1982),

describe an ‘explosion process’ which can be used to exploit extra information

from the original ranked choice sets (i.e. from horses in a race finished 2nd, 3rd

etc.) without adding too much random noise. This method involves

considering the finishing position of each horse in a given race as a set of

mutually independent choices. Consequently, it is assumed that the horse

which finished second would have won the race if the horse finishing first had

not participated in the race. For example, an explosion from depth one (the

original race) to three can produce two ‘extra races’ by sequentially

eliminating the ‘winner’ from the pared down races (i.e. a race where the

original winner is eliminated and a race where the original winner and second

are eliminated). This is clearly a valuable process as it increases the number of

independent choice sets, which results in more precise parameter estimates.

However, there is a limit to the depth to which races can be exploded since

the latter finishing positions may not truly reflect the competitiveness among

the remaining horses. This arises since it may become obvious to a jockey that

his/her mount will not finish in the first three (where prize money is awarded);

the jockey then has little incentive to ensure that the horse achieves its best

possible finish position. In fact, there may be positive incentives not to do this,

as it helps to conceal the horse’s true ability, which increases the value of the

horse’s connections’ (owners, trainers etc) private information (which they

can exploit in the betting ring in subsequent races). As a result, the maximum

depth of explosion to which a race is exploded is restricted to three in this

study (Bolton and Chapman, 1986).

For certain sets of races it may not even be appropriate to explode to level

three (since this process may introduce too much random noise) and a

statistical measure which can be used to determine the appropriate depth of

explosion is suggested by Watson and Westin (1975). This method involves

iteratively testing the hypothesis that the maximum likelihood estimates for

each individual subgroup of races are equal; the explosion process is

continued until the hypothesis is rejected. This procedure involves

determining the log-likelihood (LL) values for models estimated on the

following separate subgroups of races: (i) all runners included: (E ¼ 1);

(ii) runners which finished first excluded: (E ¼ 2) – (E ¼ 1); (iii) runners

which finished first and second excluded: (E ¼ 3) – (E ¼ 2); (iv) races

falling into categories (i) and (ii) pooled: (E ¼ 2); (v) races falling into
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categories (i), (ii) and (iii) pooled: (E ¼ 3). The statistic used to test the

hypothesis that the maximum likelihood estimates for each individual

subgroup of races are equal compares, for example, the LL of explosion depth

two (E ¼ 2) with that from the subgroups [(E ¼ 1) and (E ¼ 2) – (E ¼ 1)]

combined. This statistic is, therefore, defined as 2 2 {LL(E ¼ 2) – [LL

(E ¼ 1) þ LL((E ¼ 2) 2 (E ¼ 1))]} (Chapman and Staelin, 1982), and

follows the chi-square distribution with the degrees of freedom equal to the

number of parameters in the conditional logit model (Wald, 1943). A

particular subset of races is only exploded to a depth where the hypothesis that

the maximum log-likelihood estimates for all the subgroups of races are equal

is not rejected.

The aim of the paper is to compare the predictive ability of one- and two-

step conditional logit models. The approach is, therefore, to use the exploded

data sets to build both types of model. For the one-step model, the appropriate

depth of explosion is determined by calculating the test statistic discussed

above for the whole test sample of 1110 races (January 1995- December

1998). For the two-step model, the subset of 555 races (January 1995–

December 1996) used to estimate the fundamental model and the subset of

555 races (December 1996– December 1998) used to estimate the model

incorporating fundamental and market-generated probabilities are both tested

separately to determine the appropriate depth of explosion.

(c) Model Evaluation

The predictive ability of the two models is compared by developing a

betting strategy based on model predictions. In particular, a Kelly wagering

strategy (Kelly, 1956) is employed, based on probabilities derived from the

one and two-step models. The Kelly strategy ensures that total wealth grows

optimally at an exponential rate in the long run with zero possibility of ruin.

A Kelly betting strategy involves betting a proportion of total wealth on a given

runner. Aswealth levels increase later in the sequence of bets, very large absolute

value bets can be recommended. To ensure that the success of one of the

modelling procedures is not biased by one or two largewins later in the sequence

of bets, a Kelly strategy without re-investment is employed; the wealth level is

therefore returned to unity after each bet, whatever the outcome of the previous

bet. The accuracy of thewinning probabilities estimated by the one- and two-step

modelling procedures are assessed by comparing the rates of return obtained by

using these probabilities in a Kelly strategy to bet on the out-of-sample races.

IV. RESULTS AND DISCUSSION

(a) Model Estimates and Model Fit: Two-step Model

1. Step One: Fundamental Model

The coefficients for the ten fundamental variables in the conditional logit

model were estimated for depths of explosion one, two and three, respectively,
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based on the first subset of 555 races. These results are presented in Table 2.

To evaluate which rank ordered explosion is appropriate, sequential tests of

the hypothesis that the maximum likelihood estimates for individual

subgroups of races are equal are undertaken. These results are reported in

Table 3. The chi-square test statistics for explosion depth two (4.97) and three

(17.71) are both less than the 5% critical value (18.31), suggesting that the

hypotheses that the exploded rank ordered samples follow the same

distribution as the population cannot be rejected at the 5% level. It is,

therefore, valid to explode the choice set to a depth of 3 for the purpose of

model estimation. The value of increasing the number of observations using

the exploding procedure is demonstrated by an increase in model precision;

the estimated standard errors of the model coefficients decrease on average as

the depth of explosion increases by 28 percent (from depth explosion one to

two), and 19% (from depth two to three).

A LL ratio test comparing the fundamental variable model estimated for

explosion depth three (shown in Table 2) with one where no explanatory

predictor is incorporated demonstrates that the ten fundamental variables,

collectively, have a significant amount of explanatory power (LL ratio ¼ 590,

x210ð0:05Þ ¼ 18:31). Of the ten variables, seven are significant at the 5% level.

Two of these are associated with the situation in the current race (i.e. post-

position and the weight carried by the horse), one with the horse’s preferences

(i.e. whether the horse is running at a new distance), two with the historical

performances of the horse (variables involving past speed ratings), and two

with jockey-related variables. The model clearly demonstrates that these

variables have an impact on which horse wins a given race. In addition, the

model appears sensible, since all of the significant variables have coefficients

with the anticipated signs.

2. Step Two: Combining Fundamental and Market-Generated Information

A second-step conditional logit model, including the natural logarithm of

(i) the estimated fundamental probability from the first-step model and (ii) the

normalised probability implied by the closing bookmaker market odds is

developed, based on the second subset of 555 races. The second-step model is

TABLE 3

LOG-LIKELIHOOD VALUES AND TEST STATISTICS FOR DETERMINING THE OPTIMAL EXPLOSION

DEPTH FOR FIRST-STEP MODEL ESTIMATES

Subgroup of races No. of Races LL Value LL ratio test statistic

x210 (.05)

critical value

(E ¼ 1) 555 21,134

(E ¼ 2) 2 (E ¼ 1) 554 21,073

(E ¼ 3) 2 (E ¼ 2) 550 21,044

(E ¼ 2) 1,109 22,210 4.97 18.31

(E ¼ 3) 1,659 23,263 17.71 18.31
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estimated by exploding the 555-race sub-sample to depths of one, two and

three (see Table 4 for detailed results). The resulting log-likelihood values and

the number of races for each depth explosion are displayed in Table 5. The

value of the Watson and Westin (1975) sequential pooling test statistic for

E ¼ 3 is 11.60, which is larger than the chi-square critical value (with 2

degrees of freedom: 5.99) at the 5% level of statistical significance. The

hypothesis that the exploded rank ordered sample at explosion depth 3 follows

the same distribution as the population is therefore rejected. Consequently, it

is only appropriate to explode the 555-race sub-sample to a depth of two (1110

races).

As in step one, the standard errors of the parameter estimates of the

conditional logit model improve as more observations are added (i.e. at

explosion depth 2: see Table 4). In addition, a LL ratio test comparing the

likelihood of the data under the alternative hypothesis that all the parameters

in the model with depth explosion two are not equal to zero, against the

likelihood of the data under the null hypothesis that all the parameters in the

model are equal to zero, indicates that the combination of the two variables

offers significant predictive power (LL ratio ¼ 620, x22ð0:05Þ ¼ 5:99). In
addition, the coefficients of both the log of the normalised closing bookmaker

market odds probability and the log of the fundamental model probability are

both significant at the 5% level (t-ratio ¼ 17.19 and 3.11 respectively). This

suggests that both these variables provide valuable information for estimating

winning probabilities. This is confirmed by a LL ratio test comparing the log-

likelihood of the combined model (LL ¼ 2 2,090) with the log-likelihood of

a model simply incorporating the log of the probability derived from the final

market odds (LL ¼ 2 2,095); (LL ratio ¼ 10, which is significant at the 1

per cent level (x21ð0:01Þ ¼ 6:64)).

(b) Model Estimates and Model Fit: Ono-step Model

The one-step model is estimated by exploding the 1110 races run between

January 1995 and December 1998 to depths of one, two and three. The log-

likelihood values of each explosion depth are summarised in Table 6. The test

statistic for depth explosion two is less than the chi-square critical value but

the test statistic for depth explosion three is greater than this critical value,

TABLE 5

LOG-LIKELIHOOD VALUES AND TEST STATISTICS FOR DETERMINING THE OPTIMAL EXPLOSION

DEPTH FOR SECOND-STEP MODEL ESTIMATES

Choice Group No. of Races LL Value LL ratio x22 (.05) critical value

(E ¼ 1) 555 21,060

(E ¼ 2) 2 (E ¼ 1) 555 21,029

(E ¼ 3) 2 (E ¼ 2) 553 2994

(E ¼ 2) 1,110 22,090 1.20 5.99

(E ¼ 3) 1,663 23,090 11.60 5.99
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indicating that it is only appropriate to explode races to a depth of two for

model estimation; expanding the in-sample size from 1110 to 2219 races

(20,601 horses).

Table 7 reports the results of estimating a one-step conditional logit model

(referred to as model A) incorporating the 10 fundamental variables together

with log of the normalised probability derived from final bookmaker market

odds. This model is estimated using data exploded to a depth of two.

A comparison of model A with the model including only fundamental

variables, which is developed at step-one of the two-step procedure (results

presented in Table 2), reveals several interesting issues relevant to betting

market efficiency. Coefficients of two variables (i.e. speed rating for the

previous race in which the horse ran and average career earnings) change to

counter-intuitive signs in model A (suggesting that the public over-emphasise

this information in their assessment of winning probabilities). In addition, four

variables which were significant in the fundamental variable model

(developed at step one of the two-step procedure) are not significant at the

5% level when combined with log of the normalised odds probability (i.e.

weight carried by the horse in current race, speed rating for the previous race

in which the horse ran, the number of wins and the winning percentage of the

jockey throughout career). This suggests that, whilst these factors influence

the winning probabilities, they are fully discounted in odds. Three variables,

which were significant in the model including only fundamental variables

(which is developed at step-one of the two-step procedure), remain significant

in model A. These include post-position, average speed rating of the horse’s

last four runs and whether the horse is running at a significantly longer

distance than in its last four races. This finding implies that post-position is not

fully incorporated into the closing market prices and is consistent with

existing studies which explore the role of post-position (e.g. Quirin, 1979;

Canfield, Fauman and Ziemba, 1987; Betton, 1994). The other two variables

which are significant in both models involve information derived from several

past performances of a horse; these might, therefore, be regarded as relatively

opaque variables, and the fact that the betting public does not appear to fully

TABLE 6

LOG-LIKELIHOOD VALUES FOR DETERMINING THE OPTIMAL EXPLOSION DEPTH FOR MODEL

ESTIMATES, WHICH INCLUDES THE TEN FUNDAMENTAL VARIABLES AND THE LOG OF THE

NORMALISED ODDS PROBABILITY

Choice Group No. of Races LL Value LL ratio x211 (.05) critical value

(E ¼ 1) 1,110 22,106

(E ¼ 2) 2 (E ¼ 1) 1,109 22,038

(E ¼ 3) 2 (E ¼ 2) 1,103 21,978

(E ¼ 2) 2,219 24,149 9.67 19.68

(E ¼ 3) 3,322 26,141 29.98 19.68
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discount this information in odds is in line with laboratory based research

which indicates that individuals take less account of data which is less readily

discernable when forming their judgements (Tversky and Kahneman, 1974).

Finally, one of the most striking findings associated with model A and the

model incorporating fundamental probabilities and market-generated

probabilities (at step-two of the two-step procedure) is that the log of the

normalised odds probability appears to be highly significant, implying it has a

dominant influence in predicting the race winner.

(c) Comparison of models’ predictive ability based on a Kelly wagering

strategy

The accuracy of winning probabilities predicted by models developed by

the one and two-step procedures (both of which incorporate market-generated

and fundamental variables) are tested by a simulated betting exercise. Both

models are used to predict probabilities for the 565 out-of-sample races run

between December 1998 and August 2000, and these are used as inputs to

implement Kelly wagering strategies without re-investment of profits.

The rates of return obtained for the models developed by the one- and two-step

procedures over this period were 0.96 percent and 17.53 percent, respectively.

TABLE 7

COEFFICIENTS AND TEST STATISTICS OF CONDITIONAL LOGIT MODELS INCORPORATING

FUNDAMENTAL AND MARKET-GENERATED VARIABLES FOR EXPLOSION DEPTHS OF 1, 2, AND 3

(IN A ONE-STEP PROCEDURE)

Variables
Model A

Coefficients Std. error t-ratio

ln ðps
ijÞ **0.8091 0.0337 23.99

pre_s_ra 20.0123 0.0362 20.34

avgsr4 **0.1413 0.0449 3.15

draw **0.1367 0.0251 5.44

eps 20.0506 0.0464 21.09

newdis ** 2 0.0960 0.0332 22.90

weight *0.0554 0.0330 1.68

win_run 0.0117 0.0394 0.30

jnowin *0.0620 0.0369 1.68

jwinper 0.0350 0.0225 1.56

jst1miss * 2 0.0708 0.0376 21.88

Summary statistics

No. of races 2219 (20601 runners)

L u ¼ 0ð Þ 24,844

L u ¼
_
u

� �
24,149

Pseudo
_
R
2

0.1436

**Significant at the 5% level.
*Significant at the 10% level.
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Clearly both models suggest that the market is semi-strong form inefficient,

but the two-step model appears to capture significantly more information

relevant for winning probability prediction than the one-step model.

V. CONCLUSION

The paper set out to compare the accuracy of probability estimates based on

one- and two-step conditional logit analysis. In particular, the paper assessed the

ability of these models to make accurate assessments of the winning probability

of horses running in flat races in theUK.Themodelswere set a difficult task since

the only independent variables which were employed were those which have

been widely publicised as having an influence on winning probability (i.e.

variables employed in Bolton and Chapman, 1986).

The results suggest a number of important conclusions. Most importantly,

in relation to the central objective of this paper, the analysis conducted here

suggests that the two-step model captures more information contained in the

independent variables; as significantly larger profits were obtained in the out-

of-sample period using a betting strategy based on the predicted probabilities

from this model. These results imply that tests of market efficiency which

employ the one-step model may over-estimate the degree to which market

odds discount fundamental information. One of the reasons for this may be

that the two-step model reduces the impact of multicollinearity. Odds clearly

play a dominant role in predicting the outcome of a race and under these

conditions the correlations between the odds and other fundamental variables

are likely to be high. A model which incorporates odds and fundamental

variables in one step is, therefore, likely to produce more unstable predictions

due to muticollinearity. In addition, the coefficients of the fundamental

variables do not aid understanding of the relationship between winning

probability and the fundamental variables since these coefficients will be

affected by the degree to which bettors account for these variables in odds.

A two-step modelling process separates the odds-related variable from the

fundamental variables and allows these fundamental variables to compete for

importance in one model. This may reduce the problems resulting from

multicollinearity. An additional benefit of the two-step model, as discussed

earlier, is that it can be used in practice to capitalise on any market

inefficiency identified, since step one (the development of a fundamental

variable model) can be undertaken well before the betting period starts. This

enables bettors to complete step two in the last two minutes of the betting

period, allowing for market odds close to the start of the race. The one-step

modelling procedure would take far too long to complete, even with modern

computers, to enable predictions of winning probabilities to be generated in

the last one or two minutes before the race starts. Consequently, it can be

argued that the two-step modelling procedure is the only one of these

approaches which allows for practical application of the model in real time;
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and is therefore the only one which can be applied to test for true market

efficiency.

A further interesting finding reported here is that the variables which are

significant in the one-step model are, to some degree, different from the

variables which are significant in the fundamental model of the two-step

model. For example, jockey-related variables are significant in the

fundamental model of the two-step procedure but are no longer significant

when they are included alongside the odds variable in the one-step model.

This implies that the odds variable incorporates information in relation to the

past performances of jockeys. On the other hand, if the results of the different

modelling procedures had not been compared, the importance of each variable

with and without the odds variable included would not be revealed. In other

words, the empirical comparison between the modelling methods aids our

understanding the important factors affecting the results of horse races and the

extent to which this information is used efficiently.

Finally, the study offers important conclusions concerning the degree of

semi-strong form efficiency in the UK betting market. The results demonstrate

that certain types of information are not accounted for in market odds in the UK.

The one- and two-stepmodels both identified a number of significant explanatory

variables derived from publicly available information. For example, the position

of a horse in the starting stalls (post-position) appears to be significant at the 5%

level. This is a surprising finding for two reasons: (i) post-position is normally

made public the day before the race and this should provide sufficient time for the

public to take this information into account, (ii) Bolton and Chapman (1986)

reported post-position to have non-trivial effects on winning probabilities. In

addition, it is interesting to note that the average speed rating for a horse in its last

four races plays a significant role in forecasting the outcomes of unseen races. To

take this variable into account the betting public need to transform the underlying

data. The fact that they do not appear to account for this variable in their betting

decisions suggests that datawhich is not readily available (i.e. requires someprior

analysis) may not be acted on by the betting public. The study also confirms the

strongly positive relationship between odds and the likelihood of a horsewinning

a race, confirming that the odds variable contains a considerable amount of

information associated with a horse’s relative competitiveness in a race. The

return of 17.53% over the holdout sample period for a betting strategy based on

probabilities predicted by the two-step model suggests that the UK bookmaker-

based bettingmarket is not semi-strong form efficient. This is surprising since the

variables employed have been in the public domain since Bolton and Chapman

published their article in 1986. This finding runs counter to the efficient market

hypothesis which would predict that markets react to the publication of

information and discount it in market prices.

In summary, the results reported here further our understanding ofmodelling

of outcome probabilities in a speculative market and confirm that levels of

efficiency identified in these markets are highly dependent on the modelling

technique employed.
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