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This paper introduces an improved approach for forecasting the outcome of horseraces. Building upon

previous literature, a state-of-the-art modelling paradigm is developed which integrates least-square

support vector regression and conditional logit procedures to predict horses’ winning probabilities.

In order to adapt the least-square support vector regression model to this task, some free parameters

have to be determined within a model selection step. Traditionally, this is accomplished by assessing

candidate settings in terms of mean-squared error between estimated and actual finishing positions.

This paper proposes an augmented approach to organise model selection for horserace forecasting

using the concept of ranking borrowed from internet search engine evaluation. In particular, it is

shown that the performance of forecasting models can be improved significantly if parameter settings

are chosen on the basis of their normalised discounted cumulative gain (i.e. their ability to accurately

rank the first few finishers of a race), rather than according to general purpose performance indicators

which weight the ability to predict the rank order finish position of all horses equally.
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1. INTRODUCTION

It is widely accepted that horserace betting markets are well suited for

testing market efficiency since they share many features in common with

wider financial markets, including a large number of participants and a

considerable amount of information which is available to assess a horse’s

(asset’s) market values (Hausch and Ziemba, 1985; Johnson et al., 2006; Law

and Peel, 2002; Levitt, 2004; Sauer, 1998; Schnytzer and Shilony, 1995; Sung

and Johnson, 2007; Vaughan Williams, 1999). In addition, horserace betting

markets offer an important advantage over wider financial markets: They

generate an unequivocal outcome (a winner) and an associated rate of return

within a finite time frame (Law and Peel, 2002), and, hence, provide an

objective benchmark against which to measure the quality of an investment

decision (i.e. a bet). “As a result, wagering markets can provide a clear view of

pricing issues which are more complicated elsewhere” (Sauer, 1998 p. 2021)

and the value of studying bettors’ decisions is reinforced by the fact that these

markets are, in themselves, important. For example, the turnover of the UK

horserace betting market in 2006 was £15,500 million1.
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Predictive modelling may help to shed light on the rationality of traders’

collective decisions in such markets. In particular, a forecasting model can be

derived from past race data and employed to estimate a runner’s likelihood of

winning a future race. If the model predictions can be used to secure a profit

over a number of future races it may be concluded that market participants do

not fully discount information contained in the model (e.g., Benter, 1994;

Bolton and Chapman, 1986; Johnson et al., 2006; Sung et al., 2005). Clearly,

models which are able to more fully capture information (contained in input

variables) regarding the probabilities of horses’ winning are those which are

more likely to identify the true degree of inefficiency in a market.

Recently, Sung and Johnson (2007) have shown that, in a horserace

context, a two-stage modelling procedure, as advocated by Benter (1994),

outperforms a one-stage modelling procedure. The intuition behind such a

nested model is that market odds (prices) of horses are an extremely powerful

predictor and may thus mask the influence of other potentially informative

variables. Therefore, a first stage model is developed to process fundamental

variables to produce a score which reflects a runner’s ability based on this

fundamental information. Subsequently, this score is combined with market

odds in a second stage to generate the final forecast.

The conditional logit (CL) model (Maddala, 1983) used to be the “gold-

standard” in horserace prediction because of its ability to account for

independent variables measuring a runner’s potential and within-race

competition (Bolton and Chapman, 1986). However, recent results suggest

that the predictive power of traditional CL-based two-stage models can be

further enhanced if modern machine learning algorithms, namely support

vector machines (SVM), are employed in the first stage to extract more

information from fundamental variables (Edelman, 2006). In particular,

Edelman (2006) suggests the use of a SVM regression (SVR) model to

forecast runners’ normalised finishing positions in stage one. It is argued that a

regression model makes full use of information contained in rank ordered

finishing data and is, therefore, superior to a classification model which simply

extracts information distinguishing winners from losers (Edelman, 2006).

On the other hand, forecasting models which use the CL procedure in both

stages have been demonstrably successful (Sung et al., 2005; Sung and

Johnson, 2007). This may be explained by the fact that prize money is

generally only offered for the first few finishers of a race, so that jockeys have

little incentive to continue riding a horse to its full potential when it becomes

clear that they are not going to secure a prize. In fact, there may be a

motivation for jockeys to secure a poorer finish position on non-winning

horses than they might be able to achieve. This will have the effect of reducing

the public’s perception of the ability of the horse, which will result in higher

odds being available on the horse in subsequent races; offering the prospect of

sizeable betting gains to the owners in future races. Such effects would impair

the reliability of rank order finishing data and may reduce the accuracy of

regression-based forecasting models.
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SVR is a semi-parametric model which requires so-called hyperpara-

meters to be defined prior to model development. This is accomplished by a

validation procedure which selects the optimal hyperparameters by

iteratively assessing the performance of candidate values on holdout

samples based on the mean-squared-error (MSE) between estimated and true

(normalised) finishing position. It is well known that this model selection

procedure has a vital impact on the predictive performance of the final

model. Consequently, the potential problem of using the full range of rank

ordered finishing data for developing horserace forecasting models is further

increased when using SVR. However, the results presented in section 3.2

show that a novel approach towards model selection for predicting race

outcomes, namely, normalised discounted cumulative gain (NDCG- inspired

from the evaluation of internet search engines or recommender systems),

enables a substantial improvement over an ordinary SVR-based forecasting

model in terms of profitability.

The aim of this paper is to reduce the risk of selecting hyperparameter

values based on potentially unreliable rank ordered finishing data in horseraces.

To achieve this, the paper builds on the previous work of Edelman (2006) by

proposing an augmented SVR-based two-stage model which introduces NDCG

in the SVM model selection procedure. The paper is organised as follows:

Section 2 explores the nature of SVM modelling, including the traditional and a

more sophisticated means of selecting hyperparameter values (NDCG) for

horserace forecasting. The two stage model employed in this paper is also

introduced in this section. The experimental setup used to explore the

advantage afforded by the NDCG approach to hyperparameter selection is

outlined in section 3. The experimental results are also reported in this section.

Some conclusions are drawn in section 4.

2. FORECASTING HORSERACE RESULTS WITH
TWO-STAGE MODELS

2.1. Support vector machines for regression

The support vector machine was introduced in 1992 (Boser et al., 1992) as

a learning algorithm that infers functional relationships from data following

the structural risk minimisation induction principle (Vapnik, 1995). The

original algorithm considers the task of classification (i.e. predicting discrete

target variables (see Cristianini and Shawe-Taylor (2000) for a detailed

overview). Subsequently, the method has been extended to allow forecasting

real-valued target variables. This support vector regression (SVR) aims at

inferring a functional relationship yðxÞ : RN ! Y from an i.i.d. training

sample S ¼ {ðxi; yiÞ}
M
i¼1of M observations, whereby xi [ X # RNrepresents a

vector of measurements, and yi [ Y # R denotes a continuous target

variable. SVR assumes the linear model (1), with w and b representing the

normal and intercept of the resulting hyperplane, respectively, and �;�h i is the
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scalar product in X.

yðxÞ ¼ w;w ðxÞh i þ b:ð1Þ

To allow for more complex, nonlinear relationships, the input data is

transformed into a higher dimensional feature space via an a priori chosen

mapping w �ð Þ : RN !R
NF . It is important to note that the dimension of the

feature space, NF , is defined in an implicit way and can, in fact, be of infinite

dimensions.

According to statistical learning theory, the model parameters w and b

should be determined such that the resulting function y(x) exhibits high

accuracy while at the same time being as flat as possible (Vapnik, 1995). In

particular, flatness corresponds to having a model with low complexity (i.e.

small w (Smola and Schölkopf, 2004) whereas inaccurate predictions are

considered irrelevant as long as the deviation between the estimated and true

values are less than 1, a user-defined constant. This idea motivates Vapnik’s 1-

insensitive loss-function (Vapnik, 1995), which is defined as follows:

y 2 yðxÞj j1¼
0; if y 2 yðxÞj j # 1

y 2 yðxÞj j2 1; otherwise

( )
:ð2Þ

Integrating the two goals of predictive accuracy and flatness leads to the

following quadratic program:

w;b;j;j*
min

1

2
w;wh i þ C

XM
i¼1

ji þ ji*ð Þ

s:t yi 2 w;w xið Þh i2 b # 1þ ji ;i ¼ 1; . . . ;M

w;w xið Þh i þ b 2 yi # 1þ ji* ;i ¼ 1; . . . ;M

ji; ji* $ 0 ;i ¼ 1; . . . ;M:

ð3Þ

The slack variables ji; ji*account for the fact that it might not be possible

to approximate all xi [ S with precision 1. In other words, they represent the

distance from points outside (above or below) an 1-tube around the regression

function. The regularisation parameter C allows for a trade-off between

flatness and accuracy, i.e. the amount up to which deviations larger than 1 are

tolerated (Smola and Schölkopf, 2004). The intuition behind program (3) is

illustrated in Figure 1.

Program (3) is generally solved in its dual form, which can be obtained by

substituting the conditions for optimality with respect to the primal variables

ðw; b; j; j* Þ into the Lagrangian following from (3) (see, for example, Vapnik,

1995). This leads to the program (4), with ai;ai* denoting the Lagrangian
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multipliers (Smola and Schölkopf, 2004):

a;a*
max ¼ 2

1

2
;
XM
i;j¼1

ai 2 ai*ð Þ aj 2 aj*
� �

w xið Þ;w xj

� �� �

21
XM
i¼1

ai þ ai*ð Þ þ
XM
i¼1

yi ai 2 ai*ð Þ

s:t:
XM
i¼1

ai 2 ai*ð Þ ¼ 0 ;i ¼ 1; . . . ;M

0 # ai;ai* # C ;i ¼ 1; . . . ;M

:ð4Þ

Program (4) includes the input data only in the form of scalar products.

This feature enables an implicit transformation of the data by introducing a

kernel function. The kernel K calculates the inner product w xið Þ;w xj

� �� �
directly in the input space and thereby avoids the need to compute w �ð Þ

explicitly (Cristianini and Shawe-Taylor, 2000):

K xi; xj

� �
¼ w xið Þ;w xj

� �� �
:ð5Þ

Common choices for kernel functions include the linear kernel,

Kðxi; xjÞ ¼ xi�xj, the polynomial kernel with degree d;Kðxi; xjÞ ¼

ðxi�xj þ 1Þd, as well as the Gaussian radial basis function (RBF) with spread

parameter s;Kðxi; xjÞ ¼ exp ð2kxi 2 xjk
2

2=s
2Þ. The latter model has been

employed by Edelman (2006) to predict horses’ normalised finishing positions

over a set of Australian races and is given as:

yðxÞ ¼
XM
i¼1

�
ai 2 a*

i

�
¼ Kðxi; xÞ þ b:ð6Þ

Putting to one side the selection of a kernel function together with its

respective parameters, SVR requires the user to specify two hyperparameters,

C; 1
� �

which enable the model to be adapted to different tasks. However, the

hyperparameter 1 may be eliminated when considering a least-square loss

j(x)

y (x)

0

e-tube enclosing
regression function 

data point
supporting hyperplane
regression function

–x

+x

–e

+e

FIGURE 1. Linear SVR with 1-insensitive loss-function.
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function instead of the original 1-insensitive loss-function (Suykens et al.,

2002; Suykens and Vandewalle, 1999). The construction of this least-square

Support Vector Machine (LS-SVM) requires that a set of linear equations is

solved, which may be a much simpler task rather than solving the quadratic

program (4). Furthermore, empirical results suggest that LS-SVMs are at least

as accurate as conventional SVMs (see, for example, Baesens et al., 2003;

Van Gestel et al., 2004). Most importantly, the reduced number of

hyperparameters for the regression setting helps to simplify the task of model

selection substantially; this is discussed more fully below. Therefore, the LS-

SVM formulation for function estimation (LS-SVR) is adopted here.

LS-SVR also considers the functional model (7) and is based on the

following optimisation problem (Suykens and Vandewalle, 1999):

w;b;e
min

1

2
w;wh i þ C

XM
i¼1

e2i

s:t: yi ¼ w;w xið Þh i þ b þ ei ;i ¼ 1; . . . ;M:

ð7Þ

The error term is now denoted by e to emphasise that it represents the true

deviation between actual values and forecasts in the LS-SVR formulation,

rather than a slack variable which is needed to ensure feasibility (as in the

SVR case). The optimal solution of the dual of (7) is given by a system of

linear equations (e.g., Suykens, 2001) that can be solved efficiently, even for

large scale problems (Suykens et al., 1999). The resulting function estimation

model then becomes:

yðxÞ ¼
XM
i¼1

aiK xi; x
� �

þ b:ð8Þ

2.2. Support vector machine model selection for horserace forecasting

The task of model selection aims at finding suitable settings for the

hyperparameters of a predictive model. LS-SVR involves choosing a kernel

function and kernel parameters, and determining the regularisation parameter

C. The RBF kernel is predominantly used in SVM applications and has been

shown to possess some desirable properties. For example, Keerthi and Lin

(2003) show that it includes the linear kernel as a special case. Opting for this

kernel leaves two free parameters, namely C and s, which have to be

determined prior to model development.

A number of strategies have been proposed to organise SVM model

selection (e.g., Chapelle et al., 2002; Chung et al., 2003; Duan et al., 2003;

Joachims, 2000; Keerthi et al., 2007) with grid-search being the most popular

one (Hsu et al., 2003; Keerthi and Lin, 2003). Grid-search involves

predefining a set of candidate values for each parameter and empirically

evaluating all possible combinations. The values which are shown to lead to
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the best predictions are then used when developing the final model. Some

modifications have been suggested to ease the computational burden of

assessing a large number of parameter combinations. The approach adopted

here resembles Van Gestel et al. (2004) and starts with a coarse grid that is

subsequently refined in promising regions of the search space. In doing so, a

useful balance is achieved between examining a wide range of parameter

values and an intensive search of an area which contains the most promising

candidates (Hsu et al., 2003; Van Gestel et al., 2004).

It is well known that the predictive performance of a SVM model depends

heavily upon a suitable choice of hyperparameter values. However, the

particular parameter combination which should be chosen during model

selection depends, to some extent, on the concrete measure of predictive

performance (some empirical evidence is provided, e.g., by Coussement and

Van den Poel (2008)). This dependency is of pivotal importance when SVM-

type models are employed for horserace forecasting. The accuracy of

prediction for a regression-based modelling approach is most often assessed in

terms of mean-square-error (MSE) between the estimated and true finishing

position of horses over a number of out-of-sample races. Consequently,

information provided within rank ordered finishing positions is utilised not

only for model building but also for guiding the search for suitable

hyperparameter values. These values, in turn, have a significant impact on the

performance of the final forecasting model.

2.3. Model selection with normalised discounted cumulative gain

In view of the importance of finishing position information for SVR-based

forecasting models, unreliability of finishing positions, which often occurs

among the runners at the rear of the field, is unacceptable (see Sung and

Johnson, 2007). Therefore, the approach suggested here replaces the MSE

criterion with a more sophisticated performance indicator that better reflects

the nature of horseracing and, thereby, facilitates more robust model selection.

In particular, a performance measurement from information retrieval is

adopted, which is commonly used to evaluate search engines or recommender

systems.

It is generally accepted that users assess the accuracy of an internet search

engine predominantly in terms of the number of relevant documents presented

at the first results page. In other words, it is important for the topmost results

returned as a response to a query (i.e. the ones obtainable without additional

browsing) to contain a large number of documents the user judges as useful.

Subsequent results presented at the second, third, and following pages of a

summary dialog are rarely considered. Consequently, the primary objective

for search engines is to maximise accuracy within the highest ranked sub-

sample of retrieved documents (Cao et al., 2006).

A similar rationale can be applied to horserace prediction. For instance, a

forecasting model that predicts the finishing order of a race and confounds

only the two horses finishing at the rear of the field would be regarded as

REGRESSION MODELS TO FORECAST THE OUTCOME OF HORSERACES

175



superior to another model which predicts the actual runner-up as winner, the

true winner as second and all remaining runners correctly. However, these

models are indistinguishable using the MSE criterion: both make one error by

predicting the last two horses and the first two horses, respectively, in the

wrong order. This is problematic since a horserace forecasting model should

put special emphasis on accurately predicting the first finishers, whereas errors

among the later finishing positions should be assigned minor importance. This

view is also supported when considering which model produces predictions

which could best be used to make profits from betting. Consequently, a model

selection criterion for regression-based horserace forecasting should be

appraised in terms of its ability to rank horses in accordance with their

respective finish position, while putting special emphasis on the ability to

forecast winners and placed horses. Hence, the situation in horserace

modelling mimics the aforementioned search engine scenario.

A number of metrics that implement this evaluation strategy have been

developed within information retrieval (e.g., for crediting search-engines or

recommender systems: Breese et al., 1998; Järvelin and Kekäläinen, 2000).

The NDCG criterion (Järvelin and Kekäläinen, 2000) appears to be the most

promising indicator for LS-SVR model selection and is adopted in this study.

To introduce NDCG, consider the example given in Table 1, which

represents a race j with mj ¼ 4 runners ordered according to their actual finish

position. Let FPj and NFPj be vectors containing the ordered finish positions

and normalised finished positions of race j. Normalisation is undertaken in a

manner to scale all finishing positions to the interval [0,1] with one

representing the winner and zero the horse placed last. Let FP j
� �

and NFPð jÞ

represent the model-based estimates of these values. To ensure that greater

emphasis is given to accurate prediction of winners and near winners, a weight

vector v is introduced. Its mj components, vi, represent the relative importance

of predicting the finishing position of runner i correctly. As discussed above, it

is reasonable to assume that the relevance decreases as finish position

increases (i.e. it is most important to predict the winner correctly). Thus, the

weights in vector v should decrease monotonically and can be defined as

TABLE 1

Performance measurement with NDCG

Runner FPj NFPj FPðjÞ=NFPðjÞ

A 1 1,00 3/0,33

B 2 0,66 2/0,66

C 3 0,33 1/1,00

D 4 0,00 4/0,00
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follows (Le and Smola, 2007):

vi ¼ 1= log 2 ðiÞ þ 1
� �

;i ¼ 1; . . . ;mj:ð9Þ

Arranging the model-generated forecasts according to the true finishing

order of the horses (column 4 in Table 1), the discounted cumulated gain

(DCG) is given as the scalar product of v and NFPð jÞ. This measure can be

normalised by dividing by the DCG of an optimal prediction (i.e. the scalar

product of v and NFPj in Table 1). Consequently, NDCG is scaled between [0,

1] with one indicating a perfect prediction.

DCGModel ¼ v; NFPð jÞh i

DCGOptimal ¼ v; NFPj

� �
NDCG ¼ DCGModel=DCGOptimal:

ð10Þ

This indicator may be further refined according to the factors prevailing in

the prediction task setting which determine the reliability of the rank ordered

data. Given a threshold T which determines the number of ranks that are

considered important for the prediction task (e.g., the number of search results

that can be displayed on one web-page), v may be defined as follows (Le and

Smola, 2007):

vf ¼
1= log 2 f

� �
þ 1

� �
;f # T

0 ;f . T

( )
; f ¼ 1; . . . ;mj:ð11Þ

For horseracing data, as discussed above, the reliability of the rank ordered data

is likely to severely decrease after rank three (because horses finishing worse

than third are generally not awarded prize money). Consequently, to incorporate

this consideration into NDCG, vi can be set to zero for all i .3. Referring to the

earlier search engine analogy, finish positions which are not associated with any

prize money represent results of a query which are presented on the second or

later pages of a result dialog (see Le and Smola, 2007).

2.4 Architecture of two-stage models

Benter (1994) was the first to develop a computer model for predicting

winning probabilities of horses in two-stages. He first conducted a multivariate

linear regression of horses’ finishing positions, employing different

measurements of horses’ past performances and physical abilities as

independent variables. In the second stage, winning probabilities are estimated

using a CL procedure which combines the estimates from stage one with odds

implied probabilities (derived from the closing odds and representing the

publics’ opinion of the winning chances of each runner Johnson et al. (2006)).

Edelman (2006) revised this procedure by replacing the multivariate

regression in stage one with a SVR model. In particular, in a horserace

context, numerous factors are potentially relevant for assessing a horse’s
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chance of winning. Forecasting models, therefore, have to be robust towards a

large number of, commonly highly correlated, inputs. This is a core feature of

SVM-type methods which balance the conflicting goals of modelling the

training sample with high accuracy whilst avoiding overfitting the noise in the

data (Vapnik, 1995). The approach adopted in this paper builds on Edelman’s

(2006) work by employing a NDCG-based model selection procedure to tune

the hyperparameters of the LS-SVR model in stage one.

In outlining the procedures used to develop the LS-SVR-based model it

will be assumed that a horseracing database has the form:

D ¼ x j
i ; q

j
i ; y

j
i

� �� �
i ¼ 1; . . . ;M; j ¼ 1; . . . R;ð12Þ

where R is the number of races, M denotes the number of runners in the

database, the vector x j
i represents the fundamental variables associated with

horse i in race j, and y
j
i represents its finishing position; used as a target

variable in the first modelling stage. Note that, in order to account for the fact

that the number of horses per race varies, the normalised finishing position

here takes a value between 0.5 and 2 0.5 (i.e. the first half of the field takes

positive values and second half of the field takes negative values) using the

formula (13):

ŷ
j
i ¼ 20:5 þ

y
j
i 2 Minj y

j
i

� �� �
Maxj y

j
i

� �
2 Minj y

j
i

� � ;i ¼ 1; . . . ;M:ð13Þ

Previous studies have demonstrated that the closing odds of a horse u
j
i are

closely related to its probability of winning. They may thus unduly influence

the prediction model and mask the effect of other fundamental variables

(Benter, 1994; Edelman, 2006; Sung and Johnson, 2007). Consequently,

closing odds are not considered until the second modelling stage. In other

words, the objective of stage one is to estimate a horse’s normalised finish

position solely on the basis of fundamental variables. Therefore, a LS-SVR

model is constructed on a sub-sample D1 ¼ {ðxi; y
j
i Þ}

M1

i¼1 of D, where M1 gives

the size of this first stage sample.

In the second stage model, closing odds of a horse u
j
i are first converted to

the odds implied probabilities Q
j
i via equation Default (14) and these in turn

are converted to ‘normalised odds implied probabilities,’ which sum to one in

a race, via the normalisation process shown in (14).

Q
j
i ¼

1

1 þ u
j
i

ð14Þ

q
j
i ¼ Q

j
i

�Pmj

i¼1 Q
j
i :

A CL model is then developed using the remaining sub-sample (i.e.

D w D1). This employs the output of the first stage LS-SVR model and the
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natural logarithm of the normalised odds implied probabilities ln ðq
j
i Þ as

independent variables. Unlike the first stage model, the dependent variable of

this second stage model is a discrete variable which takes the value one for a

winner and zero otherwise. This CL model aims to predict a vector of winning

probabilities p
j
i ¼ p

j
1; p

j
2; . . . ; p j

mj

� 	
for race j, where p

j
i is the estimated

model probability of horse i winning race j. It can be shown that p
j
i is given by

the following CL function (McFadden, 1974):

p
j
i ¼

exp aŷ
j
i ðxiÞ þ b ln q

j
i

� �� �
Pmj

i¼1 exp aŷ
j
i ðxiÞ þ b ln q

j
i

� �� � :ð15Þ

where a and b are estimated using maximum likelihood procedures. This

second-stage model is designed to capture the subtle relationships between a

runner’s normalised odds implied probability, its SVR-based assessment, and

the outcome of a race.

3. EMPIRICAL EVALUATION OF THE PROPOSED MODEL
SELECTION STRATEGY

3.1. Experimental setup

To explore the potential of NDCG as a means of effectively guiding the

search for suitable LS-SVR parameter settings, an empirical study is

conducted using real-world horseracing data collected between May 1995 and

August 2000 at Goodwood racetrack in UK. The fundamental variables

describing a horse’s ability and past performances (Table 2) mimic those

included in Bolton and Chapman’s (1986) seminal paper on horserace

modelling. These variables are pre-processed in a similar manner to Lessmann

et al. (2007) (i.e. they are standardised to zero mean and unit variance).

Overall, the data set includes 556 races which are partitioned into disjoint

sub-samples for each individual modelling stage. In particular, the first 400

races (run before May 1999) are treated as a training set and are partitioned

evenly into a first (S1) and second (S2) stage sample. The remaining 156 races

are set aside for out-of-sample evaluation of the final forecasting model. This

is achieved via a betting simulation, which adopts a ‘Kelly wagering strategy’

(Kelly, 1956).

The LS-SVR model is constructed on S1, which comprises 200 races of

2116 runners in total. A 10-fold cross-validation setup (Stone, 1974) is

employed to organise model selection. That is, S1 is split into ten sub-samples

of approximately equal size and LS-SVR models are recursively constructed

on nine combined samples and applied to the remaining one (validation set).

An estimate of the model’s predictive accuracy is obtained by averaging

over the individual performance assessments on the ten validation sets.

This is undertaken for every parameter combination over an initial grid of

log (C) ¼ [23; 5] and log (s) ¼ [22.5; þ 2.5] with 10*10 cells. Then, the
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grid is refined over the most promising region of the hyperparameter space to

expand the search in this area, up to a maximal level of two refinements (Van

Gestel et al., 2004). Following this strategy, 300*10 models are constructed

and evaluated during LS-SVR model selection. The hyperparameter values

yielding the overall “best performance” are maintained. These are used to

construct an LS-SVR model on S1. The whole procedure is traversed twice,

using either MSE or NDCG for assessing the merit of a particular

hyperparameter setting.

Having completed model selection, the resulting LS-SVR model is used to

estimate normalised finishing positions of the runners in S2. These are fed into

the second stage CL-model. The parameters a;b
� �

of this model are obtained

by maximising the joint likelihood (16) of observing the respective race

results, assuming that p
j
i is as above (15):

L a;b
� �

¼
YS2j j

i¼1

p
j
i ¼

YS2j j

i¼1

exp aŷ
j
i ðxiÞ þ b ln q

j
i

� �� �
Pmj

i¼1 exp aŷ
j
i ðxiÞ þ b ln q

j
i

� �� �ð16Þ

Following the procedures outlined above, two final forecasting models are

developed, which enable winning probabilities of horses in future races to be

predicted on the basis of normalised odds implied probabilities and estimated

normalised finishing positions. They differ in terms of the model selection

TABLE 2

Definitions of the independent variables employed in the one- and two-step models

Independent

variable Variable definitions

Market-generated variable

ln ðq
j
iÞ The natural logarithm of the normalised track probabilities

Fundamental variables

pre_s_ra Speed rating for the previous race in which the horse ran

avgsr4 The average of a horse’s speed rating in its last 4 races; value of zero

when there is no past run

disavesr The average speed rating of the past runs of each horse at this distance;

value of zero when no previous run.

go_avesr The average speed rating of all past runs of the horse on this going;

value of zero when no previous run.

draw Post-position in current race

eps Total prize money earnings (finishing first, second or third) to date/Number

of races entered

newdis 1 indicates a horse that ran three or four of its last four races at a distance

of 80% less than current distance, and 0 otherwise

weight Weight carried by the horse in current race

win_run The percentage of the races won by the horse in its career

jnowin The number of wins by the jockey in career to date of race

jwinper The winning percentage of the jockey in career to date of race

jst1miss 1 indicates when the other jockey variables are missing; 0 otherwise
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criterion employed in stage one, i.e. MSE or NDCG. In order to appraise the

merit of these forecasting models, their respective profitability is measured by

simulating a ‘Kelly wagering strategy’ over the 156 out-of-sample races run

after May 1999 (see Sung et al., 2005; Sung and Johnson, 2007 for details).

The Kelly wagering strategy identifies how much to bet on each horse. Let r
j
i

be the return on a bet of one pound if horse i wins race j and let b
j
i be the

fraction of current wealth that is bet on horse i,. Given that horse h wins race j,

current wealth increases by a factor:

1 2
Xmj

i¼1

b
j
i þ b

j
h�r

j
h;ð17Þ

The Kelly strategy determines the bets to maximise the expected log

payoff across all potential winners h:

b
j

h

max
Xmj

h¼1

p
j
h� ln 1 2

Xmj

i¼1

b
j
i þ b

j
h�r

j
h

 !
;ð18Þ

It is important to note that the setup considered here employs NDCG only

to guide the search for appropriate SVR hyperparameter settings during model

selection. In particular, the first-stage SVR model with given hyperparameter

values is applied to score the runners within a set of validation races.

Subsequently, NDCG is used to measure predictive performance over each

race in this sub-sample and the merit of the respective hyperparameter setting

is given by the means NDCG over the whole validation sample.

3.2. Experimental results

The ability of the forecasting model combining LS-SVR (with traditional

MSE-based model selection) and CL to extract information from the

underlying data is confirmed when examining the performance of the

holdout sample bets: A Kelly wagering strategy (without reinvestment)

based on the predicted winning probabilities of the two-stage forecasting

model yields a remarkable return of 10.96%. For comparison purposes a

two-stage CL model is considered. This model processes fundamental

variables by means of CL regression in stage one and then pools the resulting

estimated winning probabilities with normalised odds implied probabilities

in a second stage as in (15). As shown in Sung et al. (2005) and Sung and

Johnson (2007), this procedure represents a very high benchmark. However,

the respective rate of return when run on the same dataset is only 1.75%.

When reinvestment of winnings is permitted, the LS-SVR model produces

an increase in wealth of 112.20% over the 156 holdout races. On the

contrary, wealth decreases by 16.53% when applying the model using CL in

both stages (see Figure 2). As both techniques differ only in the first

modelling stage, it can be concluded that the utilisation of LS-SVR offers a

significant improvement. This may be attributed to the fact that the nonlinear
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RBF kernel function which is employed enables LS-SVR to identify

relationships among the fundamental variables which the linear CL

procedure is unable to capture. This view is supported by the fact that the

only variables used in the two models are those included in Bolton and

Chapman’s (1986) seminal paper. The results of this paper have been widely

publicised and it is, therefore, likely that the betting public to a large extent

discount the information contained in these variables in market odds; only

complex, nonlinear interaction remaining concealed.

The previous results confirm the appropriateness of the forecasting

paradigm initially proposed in Edelman (2006). However, despite the

remarkable success of the LS-SVR/CL combination, this approach can be

augmented by employing NDCG for LS-SVR model selection. Predictions

from the NDCG approach applied to the same holdout sample used for testing

the MSE approach, offers an additional 56% profit (without reinvestment),

leading to an overall rate of return of 17.08%. Here, reinvestment of winnings

produces a wealth increase of 172.48%. The results of a betting simulation

using a Kelly wagering strategy based on the predictions from all three

procedures over the 156 holdout races is illustrated in Figure 2.

When comparing the prediction performance of the two LS-SVR based

forecasting models, it is important to note that they differ only in terms of the

accuracy indicator used in model selection to guide the search for suitable

hyperparameter values. Consequently, any observed difference between these

two can be attributed to different hyperparameters and therewith the

effectiveness of the respective model selection criterion to identify

appropriate prediction settings. In fact, the optimal hyperparameters selected

by MSE and NDCG vary by several orders of magnitude

(½C ¼ 0:11;s2 ¼ 18:85� c.f. ½C ¼ 0:004;s2 ¼ 1198:99�, respectively),

FIGURE 2. Wealth as a result of applying a Kelly-wagering strategy to the holdout sample.
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thus leading to fundamentally different LS-SVR models. For example, the

smaller C value resulting from NDCG-based model selection indicates that

this approach favours less complex models (i.e. with a flatter estimation

function). A higher tolerance towards deviations between estimated and actual

finishing positions follows directly from the construction of NDCG, punishing

prediction errors only on top-ranked horses. Therefore, the higher profitability

of the model produced by NDCG demonstrates that this performance indicator

better reflects the nature of horserace modelling.

This is further confirmed when examining the R2 values associated with

the two models. The R2 of the NDCG-based model (0.10) is greater than that

of the MSE-based model (0.08); indicating that the former model captures

more useful information contained in the fundamental variables. The

processing of these fundamental variables within the first stage model is, in

turn, heavily affected by the smoothing parameter, s2, of the RBF kernel.

In particular, NDCG-model selection leads to a significantly higher degree of

smoothing. Consequently, MSE results in inferior out-of-sample performance

because it produces overly sensitive models which are susceptible to over-

fitting noise among fundamental variables. This may arise because the MSE

approach attempts to fit the estimation function so as to predict the finishing

position of all runners as accurately as possible (including those which are less

relevant from a betting perspective). This effect may be exaggerated in

horserace prediction since different performance indicators are necessarily

used for model selection in stage one and for evaluation of the final

forecasting model. To confirm this, both MSE and NDCG are adopted to

assess predictive accuracy on the holdout sample of 156 races and the results

of the two LS-SVR models are shown in Table 3. It is shown that both

measures are well suited for hyperparameter selection. In particular, the

resulting models achieve the best out-of-sample performance when measured

in terms of the criteria which is used for model selection in stage one. Thus,

the model tuned in terms of MSE in stage one produces estimates with a lower

(better) MSE on the 156 holdout races than the model tuned in terms of

NDCG. Similarly, the model tuned in terms of NDCG in stage one produces a

higher (better) mean NDCG value over the 156 holdout races than the model

tuned on MSE. However, in a horseracing context, the ultimate objective of

model selection is to identify hyperparameters values for the first stage model

which, at the end of stage two, enable the construction of profitable prediction

models. Therefore, it may be concluded that the observed superiority of

TABLE 3

Results on the out-of-sample data in terms of MSE and NDCG

LS-SVR model tuned in

terms of MSE

LS-SVR model tuned

in terms of NDCG

MSE on 156 holdout races 0.406 0.414

NDCG averaged over 156 holdout races 0.654 0.673
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NDCG over MSE indicates that the former is better suited to achieving

this objective.

4. CONCLUSION

This paper builds upon previous results of Edelman (2006) by developing

a two-stage modelling technique for forecasting horseracing outcomes with a

novel means of parameter selection in stage one. The first stage consists of a

regression of fundamental variables describing horses’ abilities and past

performances’ on finishing positions by means of LS-SVR. In order to better

reflect the objective of developing a model that enables profitable betting, a

novel approach for selecting the respective LS-SVR hyperparameters values

in stage one is proposed. The NDCG performance indicator emerges as a very

promising candidate to guide the search for predictive parameter settings. An

empirical experiment using data from 556 races reveals significant

improvements of the augmented model over challenging competitors (i.e.

two-step models that use either CL or LS-SVR guided by MSE in stage one).

Two-step procedures for horserace forecasting are much championed in

the literature and represent the state-of-the-art in the field. In particular, the

inclusion of modern machine learning techniques like SVM-type methods in

stage one has been shown to enhance predictive accuracy. This has led to the

development of hybrid prediction models which have been shown to be

superior to approaches relying solely on traditional statistics. On the other

hand, usage of machine learning methods has so far been restricted to stage

one, whereas the task of predicting winning probabilities is predominantly left

to CL. In fact, CL may be seen as the best approach available today to account

for within race competition because the winning probability of a runner is

estimated in relation to the chances of competing horses. As a consequence,

the first modelling stage can only represent to a limited degree the objectives

of horserace forecasting. Aspects like competition, profitability, and risk elude

analysis at this stage. On the one hand, the success of these methods justifies

their application in horserace modelling and demonstrates that they are

capable of discerning information from fundamental variables which is not

taken into account by the betting public. However, the results presented here

indicate that there is further room for improvement. In particular, approaches

which narrow the gap between traditional function estimation (e.g., LS-SVR)

and the objectives of a successful horserace prediction model appear

promising. NDCG achieves this goal at the model selection level. Thus,

although a standard least-square loss function is optimised “inside” LS-SVR,

the selected hyperparameter values may increase or decrease the models

suitability for horserace forecasting tasks. This follows directly from the fact

that hyperparameters selected by NDCG yield a significantly higher profit

than those favoured by MSE. Consequently, this may suggest that further

profitability gains are achievable if procedures are developed that embody the

state-of-the-art machine learning knowledge (i.e. are based upon structural
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minimisation) and, at the same time, optimise loss functions which reflect the

particularities of horseracing. In other words, this paper demonstrates that

there are a number of areas associated with model development which can

influence the forecasting accuracy: for example, model type (e.g., CL and

SVM), loss function (e.g., least-square and 1-sensitive), and model selection

criterion (e.g., MSE and NDCG).

However, SVM-type models are black-boxes in the sense that they offer

no structural understanding to explain their predictive performance.

Consequently, the noteworthy profit produced by the LS-SVR/CL models

cannot be traced back to particular relationships among variables. Additional

methods are required to clarify these relationships and provide a deeper

understanding of market phenomena. However, the immediate benefit of

powerful modelling techniques like SVM is to demonstrate that the true

relationship between independent variables in models to predict race

outcomes has not been fully captured by traditional modelling approaches. In

this respect, the results reported here suggest that previous findings based on

conventional techniques may well have overestimated the degree to which

market participants discount information in prices.

NOTE

1. Source: Estimate from Ladbrokes, the UK’s largest bookmaking organisation.
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