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1. INTRODUCTION 
 

Horse racing is the most popular sport in Hong Kong. Nowhere else in the 
world is such attention paid to the races and such large sums of money bet. It 

is literally a “national sport”. Popular literature has many stories about 

computerized “betting teams” winning fortunes by using statistical 
analysis.[1] Additionally, numerous academic papers have been published on 

the subject, implementing a variety of statistical methods. The academic 

justification for these papers is that a parimutuel game represents a study in 

decisions under uncertainty, efficiency of markets, and even investor 
psychology. A review of the available published literature has failed to find 

any Bayesian approach to this modeling challenge.  

This study will attempt to predict the running speed of a horse in a given 

race. To that effect, the coefficients of a linear model are estimated using the 

Bayesian method of Markov Chain Monte Carlo. Two methods of computing 

the sampled posterior are used and their results compared. The Gibbs method 

assumes that all the coefficients are normally distributed, while the Metropolis 
method allows for their distribution to have an unknown shape. I will 

calculate and compare the predictive results of several models using these 

Bayesian Methods.  
 

2. OVERVIEW OF PARIMUTUEL RACING  
 
At the racecourses in Hong Kong, the games are truly parimutuel. The 

betters all place their bets in a “pool” which is subsequently divided amongst 

the winners immediately at the end of each race. Various pools exist 

representing different betting combinations, but for this paper I will focus on 
the “win pool” which represents bets on a given horse to win the race. Unlike 

a casino, the track does not bet against the public but takes a fixed percentage 

from each betting pool. (18% in Hong Kong) The pool is divided amongst the 
winning betters proportionally, based upon the amount they bet.  

A large tote-board at the track displays the expected winnings per dollar 

bet for each horse. These are commonly called the “odds”, and are often 

mistakenly interpreted, by naive betters, as a horse’s probability of winning. 
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What the posted odds do represent are a measure of the aggregate public 

opinion about a horse’s likelihood to win the race. Empirical study shows that 

there is a 40% correlation between the public’s opinion as represented by 

payoff odds and a horse’s finishing position. The market may be considered 

weakly efficient.  

 

3. LITERATURE REVIEW  
 

Since the advent of horse racing, people have searched for a way to profit 

from the game. In 1986, Boltman and Chapman describe a multinomial logit 
model that forms the basis for most modern prediction methods.[2]. In that 

paper they describe a logistic regression model for predicting the “utility” of a 

horse. Mildly positive results (profits) were produced.  

In 1994 Chapman published a second paper that refined the concepts of 
his first paper, while applying it to the horse racing industry in Hong Kong.[3] 

He compared his predicted results to the public’s and found that a 

combination of the two produced the most profitable results.  
In 1994, Bill Benter published what many consider to be the seminal work 

on the subject titled, “Computer Based Horse Race Handicapping and 

Wagering Systems”[7]. In the paper, Benter develops a two-stage prediction 

process. In stage one, he uses a conditional logit to calculate the “strength” of 
a horse. In the second stage, he combines the strength measure with the 

public’s predicted probability using a second conditional logit function. 

Benter reports that his team has made significant profits during their 5 year 
gambling operation. (Unlike the other academics discussed here, Benter 

actually lived in Hong Kong and conducted a real betting operation.)  

In 2007, Edelman published an extension of Benter’s two-stage technique. 
Edelman proposes using a support vector machine instead of a conditional 

logit for the first stage of the process. Edelman’s rationale is that a SVM will 

better capture the subtleties between the data. He theorizes that the betting 

market is near-efficient and that the bulk of the information about a horse is 
already contained in its Market odds for the race. His method simplifies 

Benters in that it only combines odds from a horse’s last race with the 

outcome and conditions of that race and the conditions of the race today.  
Lessman and Sung, in 2007 then expanded on Edelman’s work by 

modifying the first-stage SVM process [5]. They theorized that because only 

jockey’s in the first few finishing positions are trying their hardest; 

information from later finishers is not accurate as they are not riding to their 
full potential. The authors develop a data importance algorithm named 

Normalized Discounted Cumulative Gain where they assign weights to 

horse’s data as a factor of their finishing position. The result is that data from 
the first place finishers is more important than the latter finishers. This NDCG 

is used to tune the hyperparameters of the SVM which is then subsequently 

used as part of the traditional two-stage model.  
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In 2009, Lessman and Sung published another paper expanding on their 

work from 2007[6]. Where previous work has focused on regression of 

finishing position, they chose to train an SVM based on classification 
[win,lose] of race results. Their argument for this approach is that it eliminates 

pollution of the data by potentially corrupt rank orderings, especially among 

minor placings. Additionally, they pre-process the data by standardizing the 

continuous variables per race.  
 

4. DATA COLLECTION AND DESCRIPTION  
 
Historical data from September 2005 through December 2009 were 

downloaded directly from the Hong Kong Jockey Club’s official website. The 

data are 36,006 observations from 2,973 distinct horse races. (A race may 

have anywhere from 8 to 14 entrants.) The data was loaded into an SQL based 
database (MySQL). From this database of historical data, the variables were 

calculated and formatted into a second CSV file, using a Perl script, 

appropriate for direct import into R.  
The single outcome variable used in this study, is the running speed of a 

horse expressed in meters per second. A detailed description of the covariates 

is included in The Code Book 2 and a sample of the data is included in Table 
2.  

There are two race courses in Hong Kong (Sha Tin and Happy Valley). 

Sha Tin has two separate tracks (turf and dirt), so there are a total of three 

possible tracks a race may compete on. Furthermore, horses are divided into 
“classes” based upon ability. The racing stewardship attempts to create a fair 

race by grouping horses of similar ability into the same class. Lastly, there are 

several distances for which races are run. All combined, there are 73 different 
combination of course, track, class and distance, each of which will be 

referred to as a race profile. The distribution of speed run in each profile is 

notably different. This may be visualized by overlaying plots of the density of 

speed of all race profiles onto a single plot. (Figure 1) and the boxplots of 
speed stratified by profile (Figure 2)  

The distinctly different shape of the speed distributions suggest that a 

Bayesian hierarchical regression model would be well suited for this study. 
Following the methods of Lessman And Sung.[6], who centered their data per 

race, I centered the data per profile using the following formula:  

 

               (1) 

 

Where  denotes the new (original) value of attribute t of runner i in 

profile j and the mean  as well as the standard deviation  are calculated 

over the horses in profile j. 
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Speed, the dependent variable shows some correlation with the other 

variables, as described in Table 1. The data was divided into a training set, 

which consists of races prior to January 1st, 2009, and a test set consisting of 
races run during 2009. A Bayesian MCMC approach will be used to estimate 

the running speed of a horse, based on the covariates in the training set. Then 

model performance will be tested on the test data set. 

 

5  THE HIERARCHICAL MODEL 
 
The goal is to capture and describe the between-profile heterogeneity of 

the observations. As Hoffs[10] gives in Chapter 11, the within-profile 

sampling model is:  

 

      (2) 

 

Where  is a vector of variables for observation  in group ,  are the 

coefficients of the regression, and  are errors. 

Which gives the within-group regression model of:  

 

               (3) 

 

              (4) 

 

             (5) 

 

With  and  are fixed and unkonw parameters to be estimated, and  

representing random effects that vary for each group. 
 

5.1  Priors 

 
An important step in Bayesian modeling is the calculation of the prior. An 

OLS regression was performed for each group and the resulting  from each 

group were used as the prior for the Hierarchical model.  
 

                (6) 

 

       (7) 

 

5.2  Conditional Distribution 

  

      (8) 

 

  (9) 
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            (10) 

 

            (11) 
 

           (12) 

 

     (13) 

 

           (14) 

 

 

6  FITTING THE MODEL WITH MCMC 
 

6.1  Implementation of Gibbs method 
 

First, I wrote a custom R script to simulate draws from the posterior using 

the Gibbs method. The initial tests showed some autocorrelation from the 

MCMC chains, so the code was adjusted to only sample one out of every 10 
runs of the chain. A total of 300,000 iterations through the chain produced 

30,000 samples from the posterior. The chain converged well after 200,000 

iterations, so the final 100,000 were used as samples form the converged 
posterior. Storing one out of every 10 iterations gave me a chain of 10,00 

draws from the converged posterior. Additionally, I calculated the Residual 

Sum of Squared Error (RSS) for each run and stored the results along with 

each posterior sample. This chain of 30,000 RSS errors allowed me to track 
the accuracy of the inference. The residual sum of squares for this method 

converged to: 988.637 which gives a predicted  of .0350 for an individual 

horse. 
 

6.2  Implementation of Metropolis Hastings method 

 

Next, I wrote custom R code to generate draws from the posterior using 
Metropolis Hastings. Following the same model as the Gibbs technique 

above, The Metropolis acceptance ratio was used as described by the formula:  

 

               (15) 

 

Initially the acceptance ratio was low, so the variance of  was adjusted 

through trial and error to  which produced an reasonable acceptance 
ratio of 0.54. A total of 200,000 iterations were run. The chains converged 

after 100,000 iterations, so the resulting100,000 were used as samples from 

the converged posterior. SInce I am storing 1 out of every 10, the ending 

posterior chain was 10,000 long. The residual sum of squares for the this 
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method was 1033.35 which gives a predicted  of 0.0363. This was, 

surprisingly, slightly higher than the RSS from the Gibbs technique. 

 

7  RESULTS AND CONCLUSION 
 

Predicted speeds were calculated for each horse in the test data set, to 

measure predictive ability of the Gibbs model. 10,000  were drawn and then 

used in a regression with the covariates for each horse. The maximum a-

posteriori (MAP) of the resulting regression for each horse was stored as 

"predicted speed". The variance of this predicted speed was 0.0397. The horse 
with the fastest predicted speed won his race 21.63% of the time. This is 

better than a random choice, which would produce an expected winner 

between 7.14% and 12.5% (Depending on the number of horses in a race). 
However, simply betting on the horse with the highest predicted speed was 

not enough to profit. (The ultimate goal is not to guess winners, but generate 

profit.) 

As a further step, a conditional logit as calculated to combine our 
predicted speed with the public's odds estimate. As this is the "standard" for 

other predictive models. The coefficients for that model were 6.4186 for the 

public odds and 4.0541 for the hierarchical Bayesian predicted speed. 
As a further test of performance, the expected value for each bet was 

calculated as . There 

were 3,323 horses in the test set with positive expected value (out of 8,618 
possible.) If $1 had been bet on each horse with a positive expected value, the 

return would have been 2919 resulting in a net loss of $404 (-12.15%). While 

the predictive errors are small, the model is still not good enough to generate 

profit without further refinement. 
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APPENDIX 

 
Figure  1: Density distributions of speed stratified by profile 

 



2012,  6 3 THE JOURNAL OF PREDICTION MARKETS 
 

 

8 

 
 

Figure  2: Boxplots of speed stratified by race profile 
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Table 1. Correlation of variables to speed 

 

Name  Correlation  

last rank  0.077898638  

last run 1  0.091421415  

last run 2  0.106251733  

last run 3  0.110888381  

last odds prob  0.111767807  

last distance  -0.562025513  

last weight  0.035323525  

last draw  0.007378011  

last speed  0.563767210  

last percentage  -0.016219487  

perc won  0.159669358  

last 4 perc  -0.024847700  

last 4 rank  0.128202630  

last 4 odds prob  0.147430995  

rest  0.136668197  

distance  -0.799783155  

weight  0.005454088  

draw  0.022529607  

total races  -0.187955730  

bad runs  -0.077079847  

jockey rides  -0.030171224  

dist last 30  -0.217824843  
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Table  2: Data Code Book 

 

Name  Mean SD Low High Notes  

speed  16.648026  0.421332  14.297061  18.050542  Speed run in the race. This 
is our dependent variable  

odds prob  0.082121  0.081307  0.002158  0.745455  Public estimated 

probability of winning  

last rank  0.000457  1.000038  -1.672634  1.577826  
Finishing position in last 
race  

last run 1  0.000310  0.999845  -1.613067  1.594531  Position at first quarter of 
last race  

last run 2  0.000365  0.999841  -1.623586  1.597088  Position at second quarter 
of last race  

last run 3  0.000191  0.999820  -1.657603  1.597270  Position at third quarter of 
last race  

last odds prob  0.000544  0.999850  -0.976207  8.181944  Public estimated 
probability of winning last 
race  

last distance  -0.000505  0.999136  -1.679878  3.419010  distance of last race  

last weight  -0.000349  1.000267  -2.866383  1.830325  weight carried in last race  

last draw  0.000408  1.000169  -1.566456  1.879832  post position of last race  

last speed  0.000237  0.999575  -5.522472  3.813677  speed run in last race  

last percentage  0.000407  0.999548  -7.595383  2.543021  speed as percentage of 
profile record in last race  

perc won  -0.000762  0.996582  -0.766225  7.839123  percentage of races won in 
lifetime  

last 4 perc  0.001131  0.997601  -7.240364  2.922523  mean speed as percentage 
of profile record in last 4 
races  

last 4 rank  0.000107  0.999540  -2.348644  2.335103  mean finishing position in 
last 4 races  

last 4 odds prob  0.000203  0.999670  -1.132926  9.931562  mean public estimated 
probability in last 4 races  

rest  0.000100  1.000661  -0.991545  5.016491  days rest since last race  

distance  -0.002648  0.996482  -1.726967  3.412664  distance of this race  

weight  0.000140  0.999623  -2.827238  1.807332  weight carried in this race  

draw  0.000548  1.000079  -1.568536  1.882718  post position in this race  

total races  0.001505  1.000234  -1.321604  4.875548  
total races run during 
lifetime  

bad runs  0.000264  1.000246  -0.293411  8.160743  failure to finish in lifetime  

jockey rides  0.000219  0.999542  -0.651017  10.310366  number of times jockey 
has ridden this horse  

dist last 30  0.000271  0.999912  -1.167798  6.151917  distance run in the last 30 

days  
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Figure 3. Graphical representation of correlation of variables 
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Figure 4. Posterior density of theta for predictor variables –Gibbs 
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Table  3: Sample of data  

 

    1   2   3   4   5   6   7   8   9   10  

 1   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00  

last_rank   -0.98   -1.34   1.48   -1.29   0.56   1.53   1.53   0.75   -0.30   -0.37  

last_run_1   0.15   -0.36   -1.60   -0.72   1.32   0.87   1.12   -0.36   0.13   1.61  

last_run_2   -1.30   0.12   -1.30   -1.59   1.58   -1.59   1.10   -0.61   -1.10   1.01  

last_run_3   -1.37   0.36   0.13   -1.37   1.62   -0.91   1.37   -0.40   -0.66   1.32  

last_odds_prob   0.40   0.16   0.63   -0.39   -0.78   -0.62   -0.28   -0.14   -0.91   0.16  

last_distance   -1.12   -1.12   -1.12   1.06   1.06   0.82   -0.15   -1.12   -1.12   1.06  

last_weight   -0.15   1.36   -0.83   0.40   -0.56   0.81   0.67   -0.83   -1.11   0.54  

last_draw   0.95   -1.12   -1.12   0.95   -0.86   1.73   -0.08   -1.38   0.18   0.18  

last_speed   0.10   0.53   0.40   -1.30   -1.09   -0.08   0.65   0.04   -0.44   -1.75  

last_percentage   -0.43   -1.00   -0.88   0.40   0.76   0.14   0.72   -1.79   -2.57   -0.38  

perc_won   -0.90   -0.90   -0.90   -0.90   -0.90   -0.90   -0.90   -0.90   -0.90   0.94  

last_4_perc   0.55   -0.96   -0.00   -0.37   -1.28   -0.73   -0.29   -1.69   -2.03   0.08  

last_4_rank   0.00   -0.32   1.25   -0.33   -0.50   0.96   1.31   1.16   -1.24   0.20  

last_4_odds_prob  0.77   0.42   0.50   0.65   -0.35   0.21   -0.24   -0.34   -1.07   0.27  

rest   0.72   1.52   1.00   2.53   0.90   1.16   1.16   0.79   0.79   3.80  

weight   -0.20   0.26   1.03   -0.65   0.26   0.88   0.72   0.88   -0.20   -0.65  

draw   -0.33   1.42   0.67   0.17   0.92   -1.34   1.67   -1.59   0.42   -1.08  

total_races   -0.24   -0.30   -0.24   -0.54   -0.97   -0.24   -0.67   -1.10   -1.16   -0.48  

jockey_rides   -0.19   -0.59   -0.19   -0.59   -0.39   -0.39   -0.59   -0.59   0.21   -0.59  

dist_last_30   -1.06   -1.06   -1.06   -1.06   -1.06   -1.06   -1.06   -1.06   -1.06   -1.06  

 


