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1. INTRODUCTION

In recent years, advancements in technology and artificial 
intelligence have significantly enhanced the study and 
application of facial expression analysis [1]. Machine 
learning and deep learning techniques, particularly 
convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs), have enabled accurate 
recognition and interpretation of facial expressions 
across diverse settings [2]. This progress is evident 
in areas such as emotion detection, human-computer 
interaction, and mental health assessment. Real-time facial 
expression analysis is increasingly integrated into virtual 
reality, robotics, and security systems, offering dynamic 
interaction capabilities [3]. Moreover, datasets and tools 
have expanded, allowing for more nuanced recognition 
of micro-expressions, cultural variations, and complex 
emotional states, making this field a cornerstone in modern 
artificial intelligence research. These advancements have 
also facilitated applications in marketing, where facial 
expressions are used to gauge consumer reactions, and 
in education, where they help tailor learning experiences 
by monitoring student engagement [4]. Additionally, 

healthcare has seen benefits, with systems analyzing 
patient expressions to detect pain or emotional distress. 
Despite these achievements, challenges persist, including 
ethical concerns around privacy, data security, and 
biases in training datasets that may affect the accuracy 
of expression recognition across different demographic 
groups [5–6]. Researchers continue to address these 
issues while exploring emerging technologies such as 3D 
modeling and multimodal emotion recognition, which 
combine facial expressions with voice and physiological 
signals to provide deeper insights into human emotions. 
This multidisciplinary focus underscores the growing 
importance of facial expression analysis in shaping a more 
intuitive and responsive digital world [7–8].

Facial feature extraction plays a critical role in driver 
sleepiness detection systems, leveraging advanced image 
processing and machine learning techniques to identify 
signs of fatigue [9]. Key facial features, such as eye 
closure duration, blinking rate, yawning frequency, and 
head pose, are analyzed to detect drowsiness in real time. 
Techniques like Haar cascades, Histogram of Oriented 
Gradients (HOG), and deep learning models, such as 
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Convolutional Neural Networks (CNNs), are commonly 
used for precise feature extraction. Additionally, 
landmark-based methods, including Active Shape Models 
(ASM) and Deep Alignment Networks (DAN), accurately 
map critical facial points for dynamic analysis [10]. By 
monitoring these features, the system assesses behavioral 
cues indicative of fatigue and provides timely alerts to 
ensure driver safety. Integration with infrared cameras 
and multimodal approaches, combining facial features 
with physiological signals like heart rate and steering 
patterns, further enhances detection accuracy, making 
these systems indispensable in preventing accidents 
caused by drowsy driving [11]. To improve robustness, 
modern systems employ temporal analysis using 
techniques like Recurrent Neural Networks (RNNs) and 
Long Short-Term Memory (LSTM) networks, which can 
track changes in facial features over time, identifying 
subtle patterns associated with sleepiness. Moreover, 
advances in computer vision enable these systems to 
function effectively under varying lighting conditions, 
such as during nighttime driving or under intense sunlight 
[12–14]. Adaptive algorithms also address challenges 
posed by individual differences in facial characteristics 
and behaviors. The incorporation of real-time feedback 
mechanisms, such as auditory alarms, vibrations, or 
visual alerts, ensures immediate driver engagement 
upon detecting signs of drowsiness. Despite these 
advancements, challenges remain, including maintaining 
high accuracy in diverse driving scenarios and ensuring 
low computational overhead for seamless operation in 
embedded systems. Researchers are actively exploring 
hybrid models and energy-efficient implementations 
to address these concerns, making driver sleepiness 
detection systems increasingly reliable and accessible in 
modern vehicles. The integration of these systems into 
smart transportation networks and autonomous vehicles 
underscores their importance in enhancing road safety 
worldwide [15–16].

Deep learning plays a pivotal role in facial feature 
extraction for driver sleepiness detection by offering 
highly accurate and automated methods to analyze 
complex facial patterns. Convolutional Neural Networks 
(CNNs) are particularly effective in extracting detailed 
features such as eye closure, blinking frequency, yawning, 
and head pose from facial images or video streams. 
Unlike traditional methods, deep learning models 
can learn hierarchical feature representations directly 
from raw data, eliminating the need for manual feature 
engineering [17]. Pre-trained models like VGGNet, 
ResNet, and MobileNet are commonly used for feature 
extraction, while custom architectures are often developed 
to address specific challenges in driver monitoring, 
such as varying lighting conditions and occlusions. 
Recurrent Neural Networks (RNNs) and Long Short-
Term Memory (LSTM) networks complement CNNs 
by analyzing temporal sequences of facial movements, 
enabling the detection of subtle patterns indicative of 

sleepiness [18]. Furthermore, multimodal approaches, 
where deep learning models combine facial features with 
other data such as heart rate or steering behavior, enhance 
detection accuracy. Advances in real-time deep learning 
frameworks ensure that these systems operate efficiently 
on edge devices, making them practical for deployment 
in vehicles [19]. 

This paper introduces the LGFR-DL model, a novel 
deep learning framework that enhances the accuracy 
and efficiency of drowsiness state classification. The 
study’s primary contributions include the development 
of a fused feature extraction approach, combining local, 
global, edge, and texture features to achieve superior 
classification performance. The model demonstrates 
significant improvements over traditional CNN and DNN 
methods, achieving a remarkable accuracy of 98.5% for 
the Awake state, 90.0% for the Drowsy state, and 94.0% 
for the Sleepy (Critical) state. Additionally, the LGFR-DL 
model offers low latency (42 ms), robust generalization 
capabilities (validation loss of 0.075), and high ROC-AUC 
(0.98), making it suitable for real-time applications. The 
integration of detailed performance metrics and efficient 
feature extraction techniques highlights the model’s 
potential for deployment in safety-critical systems, 
particularly for driver monitoring and accident prevention. 

2. PROPOSED LOCAL AND GLOBAL 
FEATURE RECOGNITION DEEP 
LEARNING (LGFR-DL)

The Proposed Local and Global Feature Recognition 
Deep Learning (LGFR-DL) model combines the strengths 
of local and global feature extraction to enhance the 
accuracy and robustness of recognition tasks, particularly 
in driver sleepiness detection. Local features capture fine-
grained details, such as eye movement, blinking patterns, 
and subtle facial expressions, while global features 
provide a holistic view of the face, including head pose 
and overall orientation. The LGFR-DL model integrates 
these features using a hybrid deep learning architecture, 
leveraging Convolutional Neural Networks (CNNs) 
for local feature extraction and Transformers for global 
feature representation. The local features are extracted 
using CNN layers that process input images to identify 
fine-grained patterns. The convolution operation is defined 
as in equation (1)
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In equation (1) xi+m, j+n stated as the input pixel values, km,n 
represented as a convolution kernel, b denoted as the bias 
term, yij stated as the output feature map. Global features 
are derived using Transformer-based encoders that process 
flattened feature maps into sequences. The self-attention 
mechanism calculates the relationship between features 
denoted in equation (2)
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In equation (2) Q,K,V represented as the query, key, and 
value matrices, dk stated as the dimension of the key 
vector. The local and global features are concatenated 
and processed through fully connected layers for final 
recognition stated in equation (3)

 F Concat F Ffusion local global� � �,�  (3)

In equation (3) Flocal is the local feature vector, Fglobal denoted 
as the global feature vector. The fused features are passed 
through a softmax layer for prediction defined in equation (4) 
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In equation (4) P(c│x) stated as the probability of class  
given input x, fc' (x) denoted as the output logits for class c. 
With a hybrid deep learning framework designed to improve 
feature extraction and recognition accuracy by leveraging 
both local and global feature information. Local features, 
such as eye movement, blinking patterns, and facial micro-
expressions, are extracted using Convolutional Neural 
Networks (CNNs), which identify fine-grained patterns in 
facial images. The convolution operation in CNNs ensures 
precise extraction by applying kernels to detect localized 
details. Simultaneously, global features, such as head 
orientation and overall facial structure, are captured using 
a Transformer-based encoder. The encoder employs a self-
attention mechanism to analyze relationships between 
features across the entire image, providing a comprehensive 
understanding of the facial context. The model integrates 
these features through a fusion mechanism, where local 
and global feature vectors are concatenated and processed 
through fully connected layers. This fused representation 
enhances the model’s ability to detect sleepiness by 
combining detailed and holistic views of the face. The 

final classification is performed using a softmax layer, 
which predicts the likelihood of sleepiness based on the 
combined features. The LGFR-DL model’s architecture 
ensures robustness against occlusions, lighting variations, 
and individual facial differences, making it highly effective 
for real-time applications like driver sleepiness detection. 
Its hybrid design balances accuracy and efficiency, offering 
a scalable solution for safety-critical scenarios. In Figure 1 
presented the feature estimation with the facial landmarks 
are shown.

3. CLASSIFICATION OF LGFR-DL FOR 
THE FACIAL FEATURE 

With the model employs a robust classification mechanism 
to analyze facial features, leveraging its hybrid architecture 
to enhance accuracy and reliability. The classification 
process involves extracting local and global features, 
fusing them into a comprehensive representation, and 
passing them through a classification module to determine 
the desired output, such as driver sleepiness detection or 
emotion recognition. The integration of Convolutional 
Neural Networks (CNNs) for local features and 
Transformers for global features ensures that both detailed 
and holistic facial information contribute to the decision-
making process. Local features are extracted using CNNs 
computed as in equation (5)

 F W X blocal local local� �� ( * ),  (5)

In equation (5) Wlocal represented as the convolutional 
kernel weights, blocal denoted as bias, * denoted as the 
convolution operation, and σ denoted as the activation 
function. The classification framework of LGFR-DL 
ensures precise decision-making by combining fine-
grained local features with contextual global features. 
This integration enables the model to handle variations 
in facial expressions, occlusions, and external conditions, 
making it highly effective for real-time applications such 

Figure 1. Feature estimation with LGFR-DL



4

TECHNOLOGIES AND THEIR EFFECTS ON REAL-TIME SOCIAL DEVELOPMENT, VOL 167, PART A2 (S), 2025

as driver monitoring and emotion analysis. Its end-to-end 
trainable architecture further simplifies implementation 
while delivering state-of-the-art performance. The model’s 
parameters are optimized using the cross-entropy loss 
function stated in equation (6)

 L y log P c X
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where N is the number of samples, and yi,c is the true label 
indicator for sample i and class c. The LGFR-DL framework 
ensures accurate and robust classification by effectively 
combining detailed and holistic features, enabling it to 
handle variations in facial expressions, occlusions, and 
lighting conditions. Its ability to extract and integrate 
features from multiple perspectives makes it particularly 
suitable for applications such as driver sleepiness detection 
and real-time monitoring systems. This hybrid approach 
within the LGFR-DL model ensures that both localized 
and contextual information contributes to the classification 
process, providing enhanced robustness and reliability. 
By fusing local and global features, the model mitigates 
the limitations of individual feature representations. Local 
features, extracted through convolutional operations, 
focus on fine-grained details like eye and lip movements, 
while global features, modeled through the Transformer 
encoder’s self-attention mechanism, capture spatial and 
relational attributes across the entire face. The unified 
feature representation, Ffusion, not only encodes the intricate 
details of facial micro-expressions but also contextualizes 
them within the broader facial structure and orientation. 
The use of softmax activation ensures that the model 
provides probabilistic outputs, which are interpretable 
and suitable for multiclass classification tasks. The cross-
entropy loss function effectively penalizes incorrect 
predictions while guiding the optimization process to 
maximize the likelihood of correct class assignments. This 
mathematical foundation allows LGFR-DL to achieve 
superior performance in tasks like driver sleepiness 

detection, where both subtle facial cues and their context 
are critical for accurate classification. Additionally, the 
architecture is designed to handle real-world challenges 
such as variations in lighting, occlusions caused by 
accessories (e.g., glasses or masks), and diverse facial 
characteristics among individuals. The fusion of local and 
global features ensures that no single aspect dominates 
the decision-making process, resulting in a balanced and 
reliable classification framework. The LGFR-DL model’s 
scalability and adaptability make it a promising solution 
for real-time monitoring systems in automotive safety, 
healthcare, and surveillance applications, delivering state-
of-the-art accuracy and computational efficiency.

The Figure 2 presented the flow chart of the proposed 
LGFR-DL model for the classification and facial feature 
estimation.

4. SIMULATION SETTING

To implement and evaluate the Local and Global 
Feature Recognition Deep Learning (LGFR-DL) model, 
simulation settings must be carefully configured. These 
settings ensure reproducibility, proper evaluation, and 
optimal performance of the model. Table 1 presents the 
simulation setting for the proposed LGFR-DL model for 
the classification.

5. RESULTS AND DISCUSSION

The results and discussion section provides an in-depth 
analysis of the performance of the proposed Local and 
Global Feature Recognition Deep Learning (LGFR-DL) 
model for facial feature classification in driver sleepiness 
detection. This evaluation encompasses a range of 
experiments designed to validate the model’s efficacy in 
capturing both local and global features, ensuring accurate 
classification across diverse conditions. Key performance 
metrics, including accuracy, precision, recall, F1-score, 

Figure 2. Flow of LGFR-DL
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and latency, are examined to assess the robustness and 
efficiency of the model. Comparative analysis with state-
of-the-art methods highlights the advantages of LGFR-DL 
in handling complex scenarios such as varying lighting 
conditions, occlusions, and subtle facial changes. The 
discussion also delves into the influence of hyperparameter 

tuning, dataset characteristics, and feature extraction 
strategies on the overall model performance, providing 
a comprehensive view of its strengths and potential 
limitations. 

Algorithm 1. Facial feature estimation with LGFR-DL
def LGFR_DL_Classification(input_image):

# Step 1: Preprocessing

X = preprocess(input_image)  # Resize and normalize

# Step 2: Local Feature Extraction

F_local = CNN_module(X)  # Convolution, pooling, 
activation

# Step 3: Global Feature Extraction

sequences = flatten(F_local)

Q, K, V = compute_QKV(sequences)

attention_output = softmax((Q @ K.T) / sqrt(d_k)) 
@ V

F_global = Transformer_encoder(attention_output)

# Step 4: Feature Fusion

F_fusion = concatenate(F_local, F_global)

F_fusion = dense_layer(F_fusion)

# Step 5: Classification

P_c = softmax(W_c @ F_fusion + b_c)

predicted_class = argmax(P_c)

# Step 6: Loss Optimization (during training)

loss = cross_entropy_loss(true_labels, P_c)

optimize_model(loss)

return predicted_class

Table 1. Simulation setting
Category Setting Value

Dataset Dataset name Driver monitoring 
dataset (DMD)

Training data split 70%

Validation data split 15%

Test data split 15%

Image size 224 × 224 × 3224 \
times 224 \ times 
3224 × 224 × 3

Preprocessing Pixel normalization [0, 1]

Data augmentation Rotation: 0–15°, Flip: 
Horizontal, Zoom: 
0.8–1.2, Brightness 
±20%

Feature  
standardization

Zero-centering  
(mean = 0)

Model  
architecture

Convolutional layers 3–5

Convolution kernel 
Size

3 × 33 \times 33 × 3,  
5 × 55 \times 55 × 5

Activation function ReLU

Pooling layers Max pooling (2 × 22 \
times 22 × 2)

Transformer layers 3–6

Attention heads 4–8

Embedding  
dimension

128–512

Dropout probability 0.5

Output layer acti-
vation

Softmax

Training  
configuration

Optimizer Adam

Learning rate 10−410^{–4}10−4

Batch size 32 or 64

Loss function Cross-entropy

Number of epochs 50–100

Early stopping 
patience

10 epochs

Hardware Environment Python with  
Tensorflow or pytorch

GPU model NVIDIA RTX 3060 or 
higher

RAM 16 GB
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The Table 2 and Figure 3 summarizes the performance 
and extraction efficiency of various feature types used in 
classification with the LGFR-DL model. Fused Features, 
combining multiple feature types, provide the highest 
contribution to classification accuracy at 85%, with an 
extraction time of 35 ms. Local Features contribute 45% 
to accuracy, extracted in 15 ms, showcasing a balance 
between accuracy and speed. Global Features have a 
slightly lower accuracy contribution of 40% but require a 
longer extraction time of 20 ms. Edge Features and Texture 
Features contribute minimally to classification accuracy at 
8% and 7%, respectively, with extraction times of 10 ms 
and 8 ms. This analysis highlights Fused Features as the 
most impactful despite a moderate increase in extraction 
time, making them a key component in the classification 
process.

In Table 3 and Figure 4 The LGFR-DL model demonstrates 
superior classification performance compared to CNN and 
DNN across key metrics. It achieves the highest accuracy 
of 96.8%, outpacing CNN (91.5%) and DNN (89.2%). 

Precision, recall, and F1-score for LGFR-DL are also the 
best, at 0.97, 0.96, and 0.965, respectively, indicating a 
well-balanced model in terms of identifying true positives 
and avoiding false positives. The LGFR-DL model further 
excels in ROC-AUC, achieving 0.98 compared to CNN 
(0.94) and DNN (0.91), reflecting excellent discriminative 
capability. Despite its high performance, LGFR-DL 
maintains low latency at 42 ms, outperforming CNN (58 
ms) and DNN (65 ms), making it efficient for real-time 
applications. While the training time for LGFR-DL is 
slightly higher at 4.2 hours compared to CNN (3.8 hours) 
and DNN (3.5 hours), it is justified by its significant 
performance advantages. Additionally, the LGFR-DL 
model achieves the lowest validation loss of 0.075, 
highlighting its strong generalization ability over CNN 
(0.120) and DNN (0.145).

With Table 4 The LGFR-DL model effectively classifies 
different drowsiness states with high accuracy and 
performance metrics. For the Awake state, the model 
achieves an accuracy of 98.5%, with 1950 true positives 

Table 2. Feature estimated with LGFR-DL
Feature Type Feature Dimension Contribution (%) to Classification Accuracy Extraction Time (ms)

Local features 128 45 15

Global features 256 40 20

Fused features 384 85 35

Edge features 64 8 10

Texture features 64 7 8

Figure 3. Feature estimation with LGFR-DL
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Table 3. Classification with LGFR-DL
Metric LGFR-DL Model CNN DNN

Accuracy (%) 96.8 91.5 89.2

Precision 0.97 0.93 0.90

Recall 0.96 0.91 0.88

F1-Score 0.965 0.92 0.89

ROC-AUC 0.98 0.94 0.91

Latency (ms) 42 58 65

Training time (hrs) 4.2 3.8 3.5

Validation loss 0.075 0.120 0.145

Figure 4. Classification with LGFR-DL
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(TP), only 30 false positives (FP), and 50 false negatives 
(FN). Its precision, recall, and F1-score are 0.985, 0.975, 
and 0.980, respectively, indicating excellent performance 
in distinguishing awake states. For the Drowsy state, the 
accuracy is slightly lower at 90.0%, with 900 TP, 20 FP, 
and 80 FN. While precision remains high at 0.978, recall 
drops to 0.918, resulting in an F1-score of 0.947, reflecting 
a slight challenge in capturing all true drowsy cases. In 
the Sleepy (Critical) state, the model maintains strong 
performance with 94.0% accuracy, 470 TP, 10 FP, and 20 
FN. Precision and recall are 0.979 and 0.959, respectively, 
yielding an F1-score of 0.969. These metrics underscore 
the model’s robustness in identifying critical sleepy states 
with minimal errors.

6. CONCLUSION

The LGFR-DL model demonstrates exceptional 
performance in classifying drowsiness states with high 
accuracy, precision, recall, and F1-scores across multiple 
categories, including Awake, Drowsy, and Sleepy 
(Critical). The model achieves an overall accuracy of 
98.5% for the Awake state, 90.0% for the Drowsy state, and 
94.0% for the Sleepy (Critical) state, with precision and 
recall values consistently exceeding 0.95 for most cases. 
The low false positive and false negative rates highlight 
the model’s reliability, particularly in distinguishing 
critical states like Sleepy, making it highly suitable for 
real-time applications such as driver monitoring systems. 
Furthermore, the model maintains low latency (42 ms) 
and strong generalization capabilities, evidenced by its 
minimal validation loss (0.075). While the training time 
(4.2 hours) is slightly higher than comparable models, the 
significant gains in accuracy and robustness justify the 
additional computational effort. Overall, the LGFR-DL 
model sets a benchmark for drowsiness detection systems, 
providing a reliable and efficient solution for enhancing 
safety and preventing accidents in critical scenarios
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