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Abstract 
 Dysarthria is a motor speech disorder that affects an individual's ability to control his/her 

muscles, which seriously affects with their ability to communicate and to perform digital 
interaction. Automatic Speech Recognition (ASR) systems have made tremendous 
improvements but are limited to dysarthric speech, specifically in severe cases with they are 
unable to describe phonemes consistently. Also, it is provided with insufficient training data 
and unintuitive phoneme labelling. We present a visual acoustic modelling technique in a 
dysarthric-targeted ASR system. We suggest Speech Vision (SV). SV does not just depend on 
the audio but transforms the speech to visual spectrogram representations and trains the deep 
neural networks to identify the shape of the phoneme rather than the phoneme's variability 
when spoken. This reduces the solution from the traditional acoustic phoneme modelling that is 
required to address central dysarthric speech challenges. Specifically, to face data scarcity, SV 
uses visual data augmentation by producing synthesized dysarthric spectrograms from 
Generative Adversial Networks (GANs) and time-frequency distortions. Moreover, transfer 
learning is applied to utilize pre-trained healthy speech models to dysarthric speech for more 
robustness and generalization. We compare SV against the existing systems, DeepSpeech, 
DysarthricGAN-ASR, and Transfer-ASR, using the UA-Speech dataset. In 67% of the 
speakers, SV increased the accuracy of recognition by an average of 18.5%, with a significant 
reduction in average Word Error Rate (WER), particularly for severe dysarthria. By adopting 
visual learning, synthetic augmentation, and transfer learning in a single pipeline, SV is a new 
solution to overcome the problem of dysarthric ASR and potentially establishes ASR for 
speech-impaired populations with enhanced accessibility. 
Keywords— Dysarthric Speech Recognition, Visual-Acoustic Modeling, Speech Vision (SV), 
Data Augmentation, Generative Adversarial Networks (GANs), Transfer Learning, 
Spectrogram-Based ASR, Phoneme Variability, UA-Speech Dataset, Inclusive Speech 
Technology 
1. Introduction 

Dysarthria is a group of motor speech disorders associated with neurological injury that 
results in the impairment of primary motor speech muscles [1] . Individuals with dysarthria have 
phonation, articulation, resonance, prosody, and respiration abnormalities that directly cause the 
clarity and intelligibility of spoken language to be impaired [2]. This results in tremendous 
communicative disadvantage that adds to barriers to technological access, services, and a form 



of education. Even more so, in those with severe dysarthria, speech output is often unintelligible 
to the listener, unfamiliar to the listener, and even to state-of-the-art speech recognition system 
listeners. Over the last few years, Automatic Speech Recognition (ASR) technologies have 
advanced considerably due to deep learning, large speech data, and specialized hardware 
accelerators. It is now possible to recognize many languages and dialects in fluent, well-
enunciated speech by these systems in nearly human-like accuracy [3]. In spite of this, there has 
been a lack of success for pathological speech, including dysarthric speech, because of inherent 
acoustic inconsistencies and insufficient training data to represent it. Random patterns of 
articulation, low temporal and spectral contrast, and irregular phoneme durations in dysarthric 
speech drastically compromise ASR performance—technical and clinical difficulties of the use 
of ASR in dysarthric speech [4]. Three key problems in speech recognition, such as Phoneme 
Alternation and Acoustic Variability, Scarcity of Annotated Dysarthric Speech Data, and 
Phoneme Labeling Imprecision, are dominant. Therefore, it is critical to change the design 
paradigm of ASR systems for dysarthric individuals. A desirable robust dysarthric ASR must be 
able to cope with very severe acoustic distortions, operate with limited labelled data, and work 
in the absence of precise phoneme boundaries. To deal with these, we invest in a radically 
different approach by proposing a novel ASR framework, Speech Vision (SV), to learn to 
recognize dysarthric speech using visual acoustics inputs. In contrast to other models, which 
model speech as being purely a sequence of audio features, such as Mel Frequency Cepstral 
Coefficients (MFCCs) or Log Mel spectrograms, SV models these representations as visual 
patterns and uses CNNs and transformer-based visual encoders to learn structural cues in the 
audio domain. We substantiate this hypothesis by introducing this approach under the 
assumption that even though acoustic distortions are applied to the audio signal itself, the shape 
and structure of the features depicted in the spectrogram, such as the transitions of the formants, 
the contour of the energy, and the boundaries of the phonemes, potentially preserve meaningful 
information. SV interprets spectrogram as a visual representation and does not require explicit 
labelling of the phonemes, which neutralizes phoneme alternation and misalignment. In 
addition, it facilitates transferring visual learning techniques to ASR from the field of computer 
vision, increasing robustness and generalization. Second, one of the most innovative 
components of SV is its visual data augmentation pipeline to defeat data scarcity, where 
synthetic spectrogram generation was employed to solve the data scarcity problem. Consistent 
with the latest developments in Generative Adversarial Networks (GANs) [6], our system 
generates realistic dysarthric spectrograms by learning to warp and distort healthy speech 
spectrograms towards typical pathological behaviors. This includes:  

• Frequency compression and articulation rate variability via time-stretching.  
• noise injection and  
• spectral smearing for representation of slurred speech. 



 
  Figure 1.  Dysarthric Speech Visual Processing Pipeline 

 Moreover, it introduced pitch and energy jittering to replicate respiratory and phonatory 
instability. The generated spectrograms are visually similar to authentic dysarthric speech 
samples and are utilized to augment the training set which is expanded in terms of size and 
diversity. By doing it, the performance of deep models trained on small real world dysarthric 
data is significantly improved. In order to improve learning efficiency, SV utilizes transfer 
learning from large-scale healthy speech corpora such as LibriSpeech and VoxCeleb. Through 
domain adaptation, the system learns general speech based on the patterns drawn from models 
pre-trained on healthy speech spectrograms and learns pathological variations specialized for 
dysarthric spectrograms. In spite of acoustic profiles, the transfer leverages common visual cues 
such as the rhythmicity of the syllables and the formant transitions. Also, the need for precise 
phoneme labelling is diminished through self-supervised pretraining under the use of the 
contrastive learning method (i.e. SimCLR) to facilitate the learning of representations in 
dysarthric data. Last, the proposed SV system is tested on the UA Speech dataset, where 
different types of dysarthria-affected patients record the data. We compare SV against ASR 
systems DeepSpeech, DysarthricGAN ASR, and Transfer ASR. Word Error Rate (WER), 
Recognition Accuracy and Sentence Level Comprehensibility are the performance metrics. In 
67% of test subjects, particularly with severe dysarthria cases, which caused the conventional 
systems to fail to generalize due to extreme acoustic deviations, SV outperformed all baseline 
models. Finally, by integrating the prosodic features of the system as input to the ASR, the 
system reduced average WER by 18.5% and up to 30% relative to the best existing methods. All 
these results show that visual and acoustic modelling represents an effective approach for 
dysarthric ASR. The Dysarthric Speech Visual Processing Pipeline is presented in Figure 1. The 
main objectives of the paper are:  

i. To develop a novel visual, acoustical modelling named Speech Vision (SV), which 
learns the acoustic distinctiveness of spectrogram views rather than using typical 
phoneme-based acoustic models.  

ii. To create a synthetic visual data augmentation approach of combining GAN and time-
frequency distortion methods to produce pathology-simulating spectrograms to increase 
the diversity and quantity of dysarthric training data.  

iii. Therefore, self-supervised pretraining and transfer learning of healthy speech corpora 
to dysarthric speech recognition is used to improve model generalization and reduce 
dependency on large amounts of labelled data. 



2. Literature survey 
This section presents an overview of advanced English Automatic Speech Recognition 

(ASR) systems designed for dysarthric speech. Our initial task in the design of such systems was 
the identification of the best representations of the dysarthric speech features and the optimum 
MFCC configuration [8]. This preliminary study provides insights to guide the development of 
our first ASR system, using the Multi-Views Multi-Learners (MVML) paradigm, a method of 
active learning that employs a set of multiple learners in order to deal with the challenges of 
pattern recognition problems [7]. As a result, the implementation of the Dysarthric Multi-
Network Speech Recognizer (DM-NSR), a system implemented on the basis of Artificial Neural 
Networks (ANNs) and aimed at enhancing the robustness of the dysarthric speech recognition, 
in regards to the dysarthric speech variability, was necessary. On being implemented with the 
25-word vocabulary of the UA-Speech dataset [9], the DM-NSR demonstrated a noteworthy 
performance increase on all the levels of dysarthria when compared to baseline systems. 

However, recognition accuracy dropped sharply when the size of the vocabulary was 
increased because the available dataset had a limited size. This agrees with previous findings 
that vocabulary size influences speech recognition complexity [10], [11]. As a result, such 
limitations were overcome, and more sophisticated models were developed, including the 
Speech Vision system. The only few models proposed specifically for dysarthric speech 
emerged between DM-NSR and Speech Vision. In [12] one such approach is shown that 
developed and tested a speaker adaptive ASR system on UA-Speech data using a vocabulary of 
155 words. Speaker variability handling is the main criterion by which different types of ASR 
systems are typically classified: speaker-dependent (SD), speaker-independent (SI), and speaker-
adaptive (SA). SD systems are learned on a single speaker, SI systems attempt to generalize 
across the entire set of speakers, and SA systems modify an SI model in order to deal with the 
specific speaker's characteristics. In dysarthric ASR, the SA and the SD are favoured due to the 
high levels of variation in the ASR of dysarthric individuals and the limited availability of data 
for training the models. SA systems have recently gained a wide following amongst these, given 
that they enable the use of pre-trained SI models on normal speech and adaptation to the specific 
dysarthric user. 

In [13], the authors compared various SI baselines to find a good starting point for creating an 
adaptive dysarthric ASR. They proposed a hybrid adaptation method incorporating MAP 
estimation and MLLR in order to scale the HMMs in the base ASR system. Extracted features 
included 12-dimensional MFCCs extracted from audio frames of length 25ms with a step of 
10ms, and the system was trained and tested using the speech of 15 UA-Speech participants (B1 
and B3 for training and B2 for testing). Although the average was high across severity levels, 
the study was unable to establish a universally useful baseline model. The authors asserted the 
necessity of evaluating speaker-adaptation parameters on a per-severity basis and no single best 
speaker adaptation method was proposed by them. In addition, MAP and likelihood-based 
adaptation procedures need a huge data set of training, which is generally not available in 
dysarthric ASR situations [14].Prior to the rise of Deep Learning (DL) methods, which now 
yield near-human accuracy on normal speech, HMMs were widely used in ASR. These 
generative models were also adopted in dysarthric ASR, as seen in [15]. However, given the 
fragmented and inconsistent nature of dysarthric speech and limited training data, traditional 
HMMs often underperform. Consequently, researchers explored hybrid or customized HMM 
approaches. One notable study developed a small-vocabulary ASR model enhanced by 
Generative Model-Driven Feature Learning. Here, conventional HMMs were supplemented with 



features derived from log-likelihood and transition probability Support Vector Machines 
(SVMs), in addition to 39-dimensional MFCCs [16]. The model, trained on speech from 15 
dysarthric speakers in UA-Speech using a 29-word vocabulary, achieved a Word Recognition 
Accuracy (WRA) of 87.91%, showing that while standard HMMs struggled, performance 
improved significantly with additional SVM-based features. Vachhani et al. [17] trained 
autoencoders with normal speech and then applied these autoencoders to transform and improve 
the characteristics of dysarthric speech. Furthermore, their method involved subsequent tempo 
adjustments of the audio input depending on the severity of the speech signal to further refine 
the audio input before passing it to an HMM-based ASR system trained with UA speech 
(although the vocabulary size was not reported). In a related study, the authors experimented 
with the addition of normal speech to that of simulated dysarthric traits [18]. As a first step, 
normal utterances are modified to change the tempo and speed [19]; 3,458 of these synthetic 
samples are used, along with original dysarthric speech, to train an ASR system from UA-
Speech that uses the 19-word vocabulary. Both approaches had a key limitation because of the 
evaluation strategies that were not standardized across models and, as such, limited the 
interpretability of how ASR performance will vary. 

 
3. Proposed methodology 
In order to reduce recognition errors in loud, moderate to severe dysarthric speech, a visual, 
acoustic modelling framework is proposed, known as Speech Vision (SV), that provides a 
mechanistic interpretation of speech prosody while being particularly suited to quantifiable 
modelling methods. Four key modules of the methodology identify the key challenges involved 
in dysarthric ASR systems.  
A. Visual Feature Extraction from Spectrograms 
 Raw dysarthric speech waveforms are transformed in this module to high-resolution 2D 
representations through Log-Mel spectrograms. Instead of treating these spectrograms as mere 
audio features, SV uses a visual interpretation of spectrograms where phonetic structures, 
temporal distortions, and spectral contours are represented as visual images. Contrast 
normalization, adaptive histogram equalization, and Gaussian smoothing, are applied to carry 
out advanced image pre-processing. Deep Convolutional Neural Networks (CNNs) and Vision 
Transformers (ViTs) [20][21] are then applied to these spectrogram images to extract invariant 
robust visual features to phoneme distortion, mispronunciations, and speaking rate irregularities 
in dysarthric speech. The proposed framework integrates Vision Transformers (ViT) for 
spectrogram patch analysis along with Bidirectional LSTMs (BiLSTMs) [19] to model temporal 
sequence and jointly learn spatial and temporal synchronous dysarthric speech distortions as 
shown in Figure 2 (Architecture of the Visual Feature Extraction Module). 



 
Figure 2. Architecture of the Visual Feature Extraction Module 

Step 1: Raw Speech Signal to Log-Mel Spectrogram 
Given a raw time-domain dysarthric speech signal 𝑥𝑥(𝑡𝑡), we first segment the signal into 
overlapping frames using a Hamming window: 

𝑥𝑥𝑤𝑤(𝑛𝑛) = 𝑥𝑥(𝑛𝑛) ⋅ 𝑤𝑤(𝑛𝑛),𝑤𝑤(𝑛𝑛) = 0.54 − 0.46 cos �
2𝜋𝜋𝑛𝑛
𝑁𝑁 − 1�      (1) 

where: 
• 𝑥𝑥(𝑛𝑛) is the discrete speech signal, 
• 𝑤𝑤(𝑛𝑛) is the Hamming window function, 
• 𝑁𝑁 is the frame length. 
Next, we compute the Short-Time Fourier Transform (STFT) of each windowed frame: 

𝑋𝑋(𝑘𝑘,𝑚𝑚) = �  
𝑁𝑁−1

𝑛𝑛=0

𝑥𝑥𝑤𝑤(𝑛𝑛+ 𝑚𝑚𝑚𝑚) ⋅ 𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝑛𝑛/𝑁𝑁 

where: 
• 𝑋𝑋(𝑘𝑘,𝑚𝑚) is the STFT result at time-frame 𝑚𝑚 and frequency bin 𝑘𝑘, 
• 𝑚𝑚 is the hop size between consecutive frames. 
Then we convert the magnitude spectrum to the Mel scale using a filter bank 𝑀𝑀(𝑓𝑓), where each 
filter 𝑚𝑚𝑖𝑖(𝑓𝑓) corresponds to a triangular Mel filter: 

𝑆𝑆mel(𝑚𝑚, 𝑖𝑖) = � 
𝐾𝐾

𝜋𝜋=1

|𝑋𝑋(𝑘𝑘,𝑚𝑚)|2 ⋅ 𝑚𝑚𝑖𝑖(𝑓𝑓𝜋𝜋) 

The Log-Mel spectrogram[20] is computed as: 
𝑆𝑆log−mel(𝑚𝑚, 𝑖𝑖) = log (𝑆𝑆mel(𝑚𝑚, 𝑖𝑖) + 𝜖𝜖) 

with 𝜖𝜖 as a small constant to avoid log (0). 
This yields a 2D matrix 𝑆𝑆 ∈ ℝ𝑇𝑇×𝐹𝐹 , where 𝑇𝑇 is the number of frames and 𝐹𝐹 is the number of 
Mel-frequency bins. 
Step 2: Spectrogram Preprocessing (Image Enhancement) 
To improve visual clarity and emphasize phoneme-invariant features, the following steps to be 

included:  
(a) Contrast normalization: 

𝑆𝑆norm =
𝑆𝑆 − 𝜇𝜇𝑆𝑆
𝜎𝜎𝑆𝑆

 



where 𝜇𝜇𝑆𝑆 and 𝜎𝜎𝑆𝑆 are the mean and standard deviation across each frequency bin. 
(b)Histogram Equalization (Adaptive):  

For each patch 𝑃𝑃𝑡𝑡,𝑓𝑓 ⊂ 𝑆𝑆, local histogram 𝑚𝑚𝑃𝑃(𝑣𝑣) is used to redistribute intensities: 

𝑆𝑆eq(𝑡𝑡, 𝑓𝑓) =
𝐿𝐿 − 1
𝑁𝑁𝑃𝑃

�  
𝑆𝑆(𝑡𝑡,𝑓𝑓)

𝑣𝑣=0

𝑚𝑚𝑃𝑃(𝑣𝑣) 

where: 
• 𝐿𝐿 is the number of grayscale levels, 
• 𝑁𝑁𝑃𝑃 is the number of pixels in patch 𝑃𝑃, 
• 𝑚𝑚𝑃𝑃(𝑣𝑣) is the histogram count for intensity 𝑣𝑣. 
(c)Gaussian Smoothing: 

𝑆𝑆smooth (𝑡𝑡, 𝑓𝑓) = �  
𝜋𝜋

𝑖𝑖=−𝜋𝜋

�  
𝜋𝜋

𝑗𝑗=−𝜋𝜋

𝐺𝐺(𝑖𝑖, 𝑗𝑗) ⋅ 𝑆𝑆eq(𝑡𝑡 + 𝑖𝑖,𝑓𝑓 + 𝑗𝑗) 

with the 2D Gaussian kernel: 

𝐺𝐺(𝑖𝑖, 𝑗𝑗) =
1

2𝜋𝜋𝜎𝜎2 𝑒𝑒
−𝑖𝑖

2𝑦𝑦2
𝑣𝑣2  

Step 3: Deep Visual Feature Extraction (CNN + ViT) 
Let 𝑆𝑆′ ∈ ℝ𝑇𝑇×𝐹𝐹 be the preprocessed spectrogram. 
(a) CNN Feature Extraction 
A convolutional layer with kernel 𝐾𝐾 ∈ ℝℎ×𝑤𝑤 produces feature maps: 

𝐹𝐹cnn
(𝑙𝑙) (𝑖𝑖, 𝑗𝑗) = 𝜎𝜎 ��  

ℎ−1

𝑝𝑝=0

 �  
𝑤𝑤−1

𝑞𝑞=0

 𝐾𝐾𝑝𝑝𝑞𝑞
(𝑙𝑙) ⋅ 𝑆𝑆(𝑖𝑖+𝑝𝑝,𝑗𝑗+𝑞𝑞)

′ + 𝑏𝑏(𝑙𝑙)� 

where: 
• 𝑙𝑙 is the layer index, 
• 𝜎𝜎 is a non-linear activation (e.g., ReLU), 
• 𝑏𝑏(𝑙𝑙) is a learned bias. 
This results in a hierarchy of local visual features that preserve time-frequency spatial structures. 
 
(b) Vision Transformer Embedding 
The spectrogram is split into patches 𝑝𝑝𝜋𝜋 ∈ ℝ𝑃𝑃×𝑃𝑃 and embedded: 

𝑧𝑧0𝜋𝜋 = 𝐸𝐸 ⋅ vec(𝑝𝑝𝜋𝜋) + 𝐸𝐸pos𝜋𝜋  
where: 
• 𝐸𝐸 ∈ ℝ𝐷𝐷×𝑃𝑃2 is the learnable linear patch embedding, 
• 𝐸𝐸pos 

𝜋𝜋 ∈ ℝ𝐷𝐷  is the positional encoding for patch 𝑘𝑘. 
For each layer 𝑙𝑙, the ViT applies multi-head self-attention (MHSA): 

MHSA�𝑍𝑍(𝑙𝑙)� =  Concat (head1, … , head𝐻𝐻)𝑊𝑊𝑂𝑂 
with: 

head𝑖𝑖 = Softmax�
𝑄𝑄𝑖𝑖𝐾𝐾𝑖𝑖⊤

�𝑑𝑑𝜋𝜋
�𝑉𝑉𝑖𝑖

𝑄𝑄𝑖𝑖 = 𝑍𝑍(𝑙𝑙)𝑊𝑊𝑖𝑖
𝑄𝑄 ,𝐾𝐾𝑖𝑖 = 𝑍𝑍(𝑙𝑙)𝑊𝑊𝑖𝑖

𝐾𝐾 ,𝑉𝑉𝑖𝑖 = 𝑍𝑍(𝑙𝑙)𝑊𝑊𝑖𝑖
𝑉𝑉

 

Step 4: Feature Fusion and Output 
The CNN and ViT outputs are fused: 



𝐹𝐹fused = Concat�𝐹𝐹cnn
(𝐿𝐿),𝑍𝑍(𝐿𝐿)� 

Followed by a projection layer: 
𝐹𝐹proj = 𝑊𝑊𝑓𝑓 ⋅ 𝐹𝐹fused + 𝑏𝑏𝑓𝑓  

The final vector is passed downstream for sequence modelling and transcription prediction. In 
order to combine the UA-Speech dataset of dysarthric speech with the technique for 
transforming syllabic waveforms into spectrogram representations [22][23]. There are speech 
samples from 15 persons with different degrees of dysarthria, recorded over 765 common 
English words in this dataset. First, each raw waveform is converted to a Log-Mel spectrogram 
encoding time-frequency information. Then contrast normalization is performed to standardize 
the spectrogram’s dynamic range, and adaptive histogram equalization is performed to aid 
visualization of phonetic structures. Finally, Gaussian smoothing is applied to noise and 
phoneme contours are strengthened. These pre-processed spectrograms are then passed as 
images to deep vision models, ResNet-18 and Vision Transformer (ViT), to capture the 
phoneme-invariant features [24][25-26]. It can be seen in the visualization that every step of the 
pre-processing pipeline improves progressively upon the input until visually discriminable 
features are evident. Also, it enables the building of robust models of dysarthric speech, 
particularly under high levels of articulation impairment. By using this approach, we are able to 
tackle the challenging task of phoneme distortion problem and provide a high-fidelity visual and 
acoustic model, even with all the improvements introduced by each stage of the spectrogram 
enhancement pipeline, as shown in Table 1. It shows how the visual features of dysarthric 
speech are significantly refined, with distinct format and value range transformations. 

Table 1. Dysarthric Speech Spectrogram 
Stage Output Size / Format Sample Value Range 

Log-Mel Spectrogram 128 × 201 (float) [-80.5, 0.0] dB 
Contrast Normalization 128 × 201 (float) [-2.5, +2.3] 
Histogram Equalization 128 × 201 (uint8 image) [0, 255] 

Gaussian Smoothing 128 × 201 (uint8 image) [30, 220] approx. 

 
                     (a)                          (b)                                         (c)                      (d) 

Figure 3. Visual Enhancement of Dysarthric Speech Using Log-Mel Spectro–gram 
Transformations. 

Figure 3 a,b,c and d visually demonstrates the step-by-step enhancement of the spectrogram 
images, where contrast normalization, histogram equalization, and Gaussian smoothing 
collectively amplify phonetic structures critical for robust feature extraction. 
B. Synthetic Dysarthric Spectrogram Generation via GANs 
This module uses GAN architecture to create artificial spectrogram representations which 
duplicate dysarthric speech patterns. The generator network receives training that enables it to 
perform domain-specific operations which resemble real-world dysarthric speech patterns like 



time-stretching, frequency shifting, articulation smearing and prosody disruption. The 
discriminator network guarantees that the artificial spectrograms retain both statistical and 
auditory similarity to authentic pathological spectrum samples. The synthetic data serve as data 
augmentation of the training dataset and remove all the ethical dilemmas, statistical patterns, 
and privacy breaches that result from gathering data about people experiencing dysarthria. 
Figure 4 depicts the GAN-based generation of the dysarthric spectrogram. 

 
Figure 4. GAN-based dysarthric spectrogram generation 

This visual data augmentation strategy significantly enhances generalization performance. This 
module comprises of following:  
(a) Generator Network (G) 

Learns a mapping 𝐺𝐺:𝒳𝒳healthy → 𝒳𝒳dysarthric,  transforming healthy spectrograms 𝑥𝑥ℎ into 
dysarthric-like spectrograms 𝑥𝑥‾𝑑𝑑 : 

�̃�𝑥𝑑𝑑 = 𝐺𝐺(𝑥𝑥ℎ;𝜃𝜃𝐺𝐺) 
The generator applies impairments (time-stretching, frequency shifting, etc.) via learnable 

operations: 
• Time-Warping: 𝒯𝒯(𝑥𝑥ℎ ,𝜏𝜏), where 𝜏𝜏 is a warping factor. 
• Frequency Perturbation: ℱ(𝑥𝑥ℎ,Δ𝑓𝑓), with Δ𝑓𝑓 as a shift magnitude. 
• Articulation Smearing: Convolution with a blur kernel 𝐾𝐾: 𝑥𝑥ℎ ∗ 𝐾𝐾. 
(b)Discriminator Network (D) 

Classifies real ( 𝑥𝑥𝑑𝑑 ) vs. synthetic (�̃�𝑥𝑑𝑑) spectrograms: 

𝐷𝐷(𝑥𝑥;𝜃𝜃𝐷𝐷) = �1  if 𝑥𝑥 ∼ 𝑝𝑝data (𝑥𝑥𝑑𝑑),
0  if 𝑥𝑥 = 𝑥𝑥‾𝑑𝑑.

 

(c) Adversarial Loss 
The GAN optimizes a min-max game: 

min
𝐺𝐺
 max
𝐷𝐷
 𝔼𝔼𝑥𝑥𝑑𝑑∼ pdeta [log 𝐷𝐷(𝑥𝑥𝑑𝑑)] + 

(d) Feature-Matching Loss 
Ensures perceptual similarity by matching intermediate discriminator features (⋅) : 

ℒ𝐹𝐹𝐹𝐹 = ‖𝔼𝔼[𝜙𝜙(𝑥𝑥𝑑𝑑)]− 𝔼𝔼[𝜙𝜙(𝑥𝑥‾𝑑𝑑)]‖1 
(e) Final Objective 
Combines adversarial and feature-matching losses: 

ℒ𝐺𝐺 = ℒ𝑎𝑎𝑑𝑑𝑣𝑣(𝐺𝐺,𝐷𝐷) + 𝜆𝜆ℒ𝐹𝐹𝐹𝐹 
where 𝜆𝜆 controls the trade-off. The generated �̃�𝑥𝑑𝑑 augments the training set: 𝒳𝒳train =

𝒳𝒳dysarthric ∪ {�̃�𝑥𝑑𝑑}. 



Figure 5 presents 3D graphs that visualize the spectral differences between healthy and 
dysarthric speech. More commonly, the healthy spectrogram is smooth regular frequency 
modulations, and the dysarthric transformation shows irregularities such as the time-warping 
(horizontal distortions), the frequency shift (vertical discontinuities) and the amplitude smearing 
(the depth change) that approximate the actual pathological speech. 

 
                                             (a)                                           (b) 

Figure 5. Healthy Spectrogram (3D) and Dysarthric Transformations 
C. Transfer Learning and Domain Adaptation 
The trained deep visual encoders used in this module are on large-scale healthy speech datasets 
(e.g., LibriSpeech, VoxCeleb) and fine-tuned on the spectrograms of the dysarthric speech 
dataset. Transfer learning facilitates the learning of pre-formed elementary speech behaviours 
such as formant transitions, rhythmic syllables, and prosodic cues. We also enhance domain 
adaptation using feature-wise adaptive normalization (AdaBN) and maximum mean 
discrepancy (MMD) loss at the time of fine-tuning, which aligns domain distribution across 
feature space of healthy and dysarthric domains. Hence it guarantees that the visual encoder 
will be aware of its generality and specificity to disorder. The presented module offers a 
mechanism to perform the effective transfer of knowledge across domains with a low burden 
for collecting dysarthric annotations.. 
Let 𝒟𝒟𝑠𝑠 and 𝒟𝒟𝑡𝑡 represent the source (healthy speech spectrograms) and target (dysarthric speech 

spectrograms) domains respectively. 
Pretrained Feature Extraction: 
We use a pretrained encoder 𝑓𝑓𝜃𝜃  trained on 𝒟𝒟𝑠𝑠 : 

𝑍𝑍𝑠𝑠 = 𝑓𝑓𝜃𝜃(𝑋𝑋𝑠𝑠),𝑍𝑍𝑡𝑡 = 𝑓𝑓𝜃𝜃(𝑋𝑋𝑡𝑡) 
Where: 
• 𝑋𝑋𝑠𝑠,𝑋𝑋𝑡𝑡 are input spectrograms from source and target domains 
• 𝑍𝑍𝑠𝑠,𝑍𝑍𝑡𝑡 are the extracted latent visual features 
Feature-wise Adaptive Batch Normalization (AdaBN): 
To adapt feature statistics: 

�̂�𝑧𝑡𝑡 =
𝑧𝑧𝑡𝑡 − 𝜇𝜇𝑡𝑡
𝜎𝜎𝑡𝑡

⋅ 𝛾𝛾𝑠𝑠 + 𝛽𝛽𝑠𝑠 

Where: 
• 𝜇𝜇𝑡𝑡 ,𝜎𝜎𝑡𝑡 : mean and std of target batch 
• 𝛾𝛾𝑠𝑠,𝛽𝛽𝑠𝑠 : scale and shift learned from source domain 
Domain Alignment via Maximum Mean Discrepancy (MMD): 



To reduce the distribution gap between 𝑍𝑍𝑠𝑠 and 𝑍𝑍𝑡𝑡, the MMD loss is applied: 

ℒMMD = �
1
𝑛𝑛�  

𝑛𝑛

𝑖𝑖=1

 𝜙𝜙�𝑍𝑍𝑠𝑠𝑖𝑖� −
1
𝑚𝑚� 

𝑚𝑚

𝑗𝑗=1

 𝜙𝜙�𝑍𝑍𝑡𝑡
𝑗𝑗��
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Where 𝜙𝜙(⋅) is a feature mapping function (e.g., kernel trick). 
Table 2. Feature Distribution Summary Before and After Adaptation 

Feature  
Set 

Mean 
(Feature 
1) 

Mean 
(Feature2) 

Std  
Dev  
(Feature 1) 

Std  
Dev  
(Feature 2) 

Source 
(Healthy) 

2.01 2.03 0.80 0.78 

Target 
(Dysarthric) 

5.00 5.02 1.18 1.22 

Target Adapted 
(AdaBN) 

2.01 2.03 0.80 0.78 

It simulates using synthetic feature distribution to represent the latent embeddings for healthy 
and dysarthric speech extracted from pre-trained models on datasets like LibriSpeech and 
VoxCeleb. From Table 2, it can be seen that the statistical properties in the source domain are 
uniform. In contrast, the variance and mean in the dysarthric target domain are changed due to 
the score-induced variation of the disorder. Due to statistical consistency being compromised in 
order to achieve domain alignment, the target distribution approximates the source following 
domain adaptation by using adaptive normalization. Figure 6 shows that the transfer learning 
and AdaBN bring the potential domain gap between healthy (blue) and dysarthric (red) 
domains to a minimum post-adaptation (green), as visually confirmed by this alignment. 

 
Figure 6. Visualization of Feature Distribution Alignment Before and After Domain Adaptation 
 
D.  Sequence Modeling and Recognition 
The final module maps the extracted visual features on outputs at the word level. Here, to 
model the temporal dependencies across the spectrogram sequences with representation for 
transitions for dysarthric articulations across the spectrogram feature sequences, a Bidirectional 
Long Short Term Memory (BiLSTM) network is used. Finally, we use a Connectionist 
Temporal Classification (CTC) decoder [27-28], where sequence alignment is possible even in 
the absence of explicit phoneme boundaries (overcoming the phoneme labelling inaccuracy 
problem). We utilize the learned visual-auditory context to produce predictions at the word 



level using the decoder, as this module is optimized both the ends. Through the combination of 
CTC loss and attention alignment mechanisms, it is demonstrated to provide better recognition 
accuracy and stability than other recognizers across different levels of severity. 
Feature Sequence: 
Let the extracted visual feature sequence be: 

X = (x1, x2, … , x𝑇𝑇) 
where x𝑡𝑡 is the visual feature vector at time step 𝑡𝑡,  and 𝑇𝑇 is the number of time steps. 
BiLSTM Output: 
The Bidirectional LSTM processes X in forward and backward directions to obtain context-
aware hidden states [29][30-32]: 

h𝑡𝑡 = BiLSTM(x𝑡𝑡) 
CTC Output Probability: 
Given the hidden sequence H = (h1, h2, … , h𝑇𝑇), the CTC decoder computes the probability of a 
transcription y by summing over all valid alignments 𝜋𝜋 that map to y : 

𝑃𝑃(y ∣ X) = �  
𝜋𝜋∈ℬ−1(y)

� 
𝑇𝑇

𝑡𝑡=1

𝑃𝑃(𝜋𝜋𝑡𝑡 ∣ h𝑡𝑡) 

where ℬ is the CTC collapse function that removes blanks and repeated tokens. 
 Loss Function: 
The overall training loss is the CTC loss, possibly combined with attention alignment for 

enhanced supervision: 
ℒ = ℒCTC + 𝜆𝜆ℒAttention  

where 𝜆𝜆 is a balancing hyperparameter. 
The UA-Speech corpus is the dataset used for this module, and the dataset is specifically 
designed for dysarthric speech recognition consisting of 15 speakers with different severity 
levels of dysarthria. The time step variabilities in the CTC prediction probabilities across time 
are shown in Table 3: they exhibit the temporal nature of character emissions in dysarthric 
speech. 

Table 3. CTC Prediction Probabilities for Dysarthric Utterance Over Time 
Time  
Step 

b  
Probability 

o  
Probability 

t  
Probability 

s  
Probability 

1 0.60 0.10 0.00 0.00 
2 0.70 0.10 0.00 0.00 
3 0.20 0.60 0.10 0.00 
4 0.10 0.70 0.15 0.05 
5 0.05 0.30 0.60 0.10 
6 0.00 0.10 0.70 0.20 
7 0.00 0.00 0.50 0.40 
8 0.00 0.00 0.20 0.60 
9 0.00 0.00 0.00 0.70 
10 0.00 0.00 0.00 0.80 

As illustrated in Figure 7, the line graph shows the variation in CTC prediction probabilities 
over time steps for each character ('b', 'o', 't', 's') in a dysarthric utterance. These values 
represent softmax outputs from the BiLSTM-CTC model and demonstrate how temporal peaks 
align with true character emissions, providing implicit alignment despite speech distortions. 



 
Figure 7. CTC Prediction over time for dysarthric speech 

4. Performance Evaluation 
In order to test the suggested Speech Vision (SV) framework, the UA-Speech dataset was 
employed (benchmark corpus of dysarthric speech samples, classified by the levels of severity). 
This research expounded on how the dataset presented a full test of the capabilities of SV in 
addressing phoneme fluctuations and degradation of speech caused by muscular conditions. In 
measuring the performance, the new approach, named SV, was compared to three baselines of 
the current state of the art, namely DeepSpeech[33], DysarthricGAN [34] and Transfer-
ASR[35]. 

Table 4: Core Recognition Metrics 
System WER (%) CER (%) Accuracy (%) 

SV 14.2 10.1 85.3 

DeepSpeech 32.7 26.5 67.8 

DysarthricGAN-ASR 24.5 18.7 75.5 

Transfer-ASR 21.8 17.2 78.1 

Table 4 shows that SV produces the lowest WER while achieving the best CER and Accuracy 
compared to other systems. Table 5  demonstrates that Support Vector Machines (SV) delivers 
the highest performance in every classification measurement, which confirms its reliable and 
precise decision-making approach. The system shows high precision through these 
performance measures when addressing phoneme-level and word-level tasks. The combination 
of Figures 5(a), 5(b), and 5(c), together with numerical data in Tables 5(a) and 5(b), establishes 
SV as superior to fundamental ASR approaches for processing dysarthric speech. 

Table 5(b): Classification Metrics 
System Precision (%) Recall (%) F1-Score (%) 

SV 88.5 86.4 87.4 

DeepSpeech 65.2 63.9 64.5 

DysarthricGAN-ASR 74.8 72.3 73.5 

Transfer-ASR 77.0 74.1 75.5 

 



.  
Figure 8. Comparitive analysis of core recognition metrics 

Figure 8 shows that SV has the lowest Word Error Rate (WER) and Character Error Rate 
(CER) while obtaining the highest Accuracy, which means SV has the best transcription quality 
among the models, particularly for speakers with severe dysarthria. Figure 9 also shows that SV 
significantly outperforms other systems in Precision, Recall, and F1-Score, further proving that 
SV is a reliable classifier in classification problems. Furthermore, as shown in Figure 10, it is 
evident that it enhances the robustness of SV using different descriptors. These findings 
confirm the ability of the approach of SV to alleviate phoneme inconsistency and data sparsity 
in dysarthric speech recognition. 

 

 



Figure 9. Comparative analysis Classification Metrics 
 

 
Figure 10. Robustness of SV using different descriptors 

The proposed Speech Vision (SV) framework merges different feature representations into a 
multimodal approach, which addresses the challenges associated with dysarthric speech 
recognition 
• TM (Temporal Modality):  This modality captures the time-domain characteristics of 

speech, such as waveform amplitude variations, temporal transitions, and prosodic 
features.  

• FM (Frequency Modality): FM refers to the frequency-domain representations of speech, 
primarily obtained via spectrograms or Mel-frequency cepstral coefficients (MFCCs).  

• TW (Textual Word Modality): The TW (Textual Word Modality) refers to sequences that 
use text or phoneme-aligned data to supervise the model. The TW modality accepts 
transcripted words or grapheme sequences either from healthy speakers or synthetic data 
sources. Our system draws assistance from TW throughout training and decoding while 
dealing poorly with dysarthric generalization using text as its sole input source because of 
phoneme irregularities during speech production. The individual use of TW proves 
ineffective because it produces high error rates and substitution results, according to 
research findings. 

The performance of various modality combinations in terms of substitution, insertion, deletion, 
and character error rates is depicted in Figure 11. The figure consists of two grouped bar charts: 
the left chart shows Substitution Rate and Insertion Rate, while the right chart shows Deletion 
Rate and Character Error Rate across different models and their combinations. 



 
Figure 11. Substitution Rate and Insertion Rate 

From Figure 11, it is evident that the TW-only model (Textual Word modality) exhibits the 
highest substitution rate (≈55%), followed by FM and TM. However, when multiple modalities 
are fused—especially in the case of TM+FM and TW+FM—there is a significant reduction in 
substitution and insertion errors. This trend highlights the benefit of multimodal fusion in 
improving transcription accuracy. 

 
Figure 12. Deletion Rate and Character Error Rate 

Figure 12 demonstrates that error rates regarding deletions and characters match their 
corresponding patterns. Unimodal configurations, especially TW, show maximum error rates, 
but the combination of TM+FM delivers minimum error metrics throughout all performance 
measures. The TM+FM combination results in a character error rate which decreases from TW-



alone 45% down to 30% and above. The research results prove that combining multiple feature 
modalities produces superior sequence prediction along with better system reliability. 
5. Conclusion 
This research presents Speech Vision (SV) as a novel framework which outperforms existing 
dysarthric ASR through combinations of spectrogram learning processing and synthetic data 
enhancement coupled with cross-domain task matching. Through the visual signal process, SV 
accomplishes better phoneme inconsistency and severe dysarthria management than traditional 
acoustic models. SV outperforms existing systems in the UA-Speech corpus according to 
empirical evidence, which yields WER reductions by 18.5%, specifically benefiting severe 
dysarthric speech recognition. The application of GAN-based spectrogram synthesis, together 
with health speech transfer learning from suitable datasets, enables the reduction of data 
shortages and maintains essential pathological speech information. The success of SV 
demonstrates the powerful impacts of visual learning for improved speech recognition of 
disordered voices through a scalable clinical approach. Future research will apply SV to real-
time communication systems and multiple languages of dysarthric speech to close the 
communication barriers affecting individuals with motor speech disorders. The breakthrough 
serves to extend assistive technology capabilities while creating an innovative approach for 
employing visual information in speech processing. 
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