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1. INTRODUCTION

Data mining algorithms play a pivotal role in drug 
quality control by extracting valuable insights from large 
datasets to ensure the safety, efficacy, and consistency of 
pharmaceutical products [1]. These algorithms employ 
various techniques such as clustering, classification, and 
association rule mining to analyze vast amounts of data 
generated during the production, testing, and monitoring 
phases of drug manufacturing [2]. In drug quality control, 
clustering algorithms are utilized to group similar products 
or batches based on their characteristics, facilitating the 

identification of outliers or anomalies that may indicate 
quality issues. By identifying clusters of similar products, 
manufacturers can ensure uniformity and consistency 
across batches, thereby maintaining high-quality standards 
[3]. Classification algorithms are employed to categorize 
drugs into different classes or categories based on predefined 
criteria such as potency, dosage form, or therapeutic 
indication. This enables pharmaceutical companies to 
classify products accurately and ensure compliance with 
regulatory requirements [4–5]. Additionally, association 
rule mining algorithms are used to discover meaningful 
associations and relationships between various factors 
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such as raw materials, manufacturing processes, and 
product attributes [6-8]. These associations help identify 
potential risk factors or correlations that may impact drug 
quality, allowing manufacturers to take proactive measures 
to mitigate risks and enhance quality control measures.

Mass spectrometry data processing and feature extraction 
are integral components of drug analysis in quality control 
procedures [9–10]. Mass spectrometry techniques enable 
the precise identification and quantification of drug 
compounds and impurities present in pharmaceutical 
products [11]. However, the sheer volume and complexity 
of mass spectrometry data require sophisticated data 
processing techniques to extract meaningful information 
effectively [12–14]. Data mining algorithms are 
increasingly employed in drug quality control to process 
mass spectrometry data and extract relevant features 
that contribute to the assessment of drug quality and 
consistency. These algorithms encompass a range of 
approaches, including clustering, classification, and 
regression, tailored to the specific requirements of drug 
analysis [15]. In mass spectrometry data processing, 
clustering algorithms are utilized to group similar mass 
spectra, enabling the identification of distinct chemical 
profiles or patterns within the data [16–18]. This clustering 
facilitates the detection of outliers or deviations from 
expected spectra, which may indicate the presence of 
impurities or variations in drug composition.

Classification algorithms are employed to categorize 
mass spectra into different classes or categories based 
on predefined criteria such as compound identity or 
quality attributes. By accurately classifying mass spectra, 
pharmaceutical companies can assess the conformity 
of drug samples to predefined quality standards and 
regulatory requirements [19]. Furthermore, regression 
algorithms are used to model the relationship between 
mass spectrometry features and key quality attributes such 
as potency, purity, or stability. These models enable the 
prediction of important drug quality parameters based on 
mass spectrometry data, facilitating real-time monitoring 
and control of manufacturing processes [20–21]. In 
drug quality control, mass spectrometry is a cornerstone 
analytical technique used for the identification, 
quantification, and characterization of pharmaceutical 
compounds and their impurities. Mass spectrometry 
generates vast amounts of data, often in the form of mass 
spectra, which represent the molecular composition of a 
sample [22]. However, processing and analyzing this data 
can be challenging due to its high dimensionality, noise, 
and complexity. This is where data mining algorithms 
come into play, offering powerful tools to extract 
meaningful information from mass spectrometry datasets. 
One crucial aspect of mass spectrometry data processing 
is feature extraction [23–24]. Features are characteristics 
or attributes derived from the mass spectra that capture 
relevant information about the chemical composition and 
quality of the drug sample. These features could include 

peak intensities, mass-to-charge ratios, retention times, 
or other spectral properties [25]. Data mining algorithms 
are applied to extract and select the most informative 
features from mass spectra. Feature extraction techniques 
may involve dimensionality reduction methods such as 
principal component analysis (PCA) or feature selection 
algorithms like recursive feature elimination (RFE)[16]. 
These techniques help streamline the analysis by focusing 
on the most relevant aspects of the data while reducing 
computational complexity and noise.

The contribution of this paper lies in introducing Ethereum 
Blockchain Clustering (EBC) as a pioneering approach 
to drug quality assessment within the pharmaceutical 
industry. By integrating blockchain technology with mass 
spectrometry data analysis, we offer a transparent and 
decentralized framework for managing and evaluating drug 
quality attributes. Our research demonstrates the efficacy 
of EBC in categorizing drug samples, extracting pertinent 
features, and assessing critical parameters such as potency, 
purity, and stability. This novel methodology addresses 
the pressing need for enhanced transparency, traceability, 
and trustworthiness in the pharmaceutical supply chain. 
Furthermore, our simulations and case studies illustrate 
the tangible benefits of EBC, including improved patient 
safety, healthcare outcomes, and regulatory compliance. 
By highlighting the transformative potential of blockchain 
technology in revolutionizing drug quality assessment, this 
paper opens avenues for further research and development 
in the field. Future endeavors may focus on scaling and 
implementing EBC across the pharmaceutical ecosystem, 
thereby fostering a more secure, efficient, and trustworthy 
environment for drug development, distribution, and 
utilization.

2. DATA ANALYTICS IN DRUG QUALITY 
CONTROL

Data analytics plays a vital role in drug quality control, 
utilizing various mathematical and statistical techniques 
to analyze and interpret data generated throughout the 
drug manufacturing process. One essential aspect of data 
analytics in drug quality control is the application of 
statistical process control (SPC) methods, which enable the 
monitoring and improvement of manufacturing processes 
to ensure consistent product quality. A fundamental concept 
in statistical process control is the control chart, which 
provides a graphical representation of process variation 
over time. The most commonly used control chart in drug 
quality control is the Shewhart control chart, which plots 
sample means or sample ranges against control limits 
derived from historical process data. The control limits 
for a Shewhart control chart are typically calculated using 
the process mean (μ) and standard deviation (σ) estimated 
from historical data. For sample means, the control limits 
are often set at ±3σ from the process mean, representing 
the expected variation in the process. Mathematically, 
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the control limits for the sample mean (X̄) chart can be 
expressed as:

 Upper Control Limit (UCL) = μ + 3σ	   
 Lower Control Limit (LCL) = μ − 3σ (1)

Similarly, for sample ranges, the control limits are 
calculated based on the expected variability in sample 
measurements. The control limits for the sample range (R) 
chart can be expressed as:

 Upper Control Limit (UCL) = D4 * R   
 Lower Control Limit (LCL) = D3 * R (2)

Where R̄ is the average range of samples, and D3 and D4 
are constants derived from statistical tables based on the 
sample size. By plotting sample means or ranges on control 
charts and monitoring them over time, pharmaceutical 
companies can quickly identify any deviations or trends 
that may indicate process instability or the presence of 
assignable causes of variation. This allows for timely 
intervention and corrective actions to be taken to maintain 
process consistency and ensure the quality of the final 
drug product. In drug quality control, data analytics 
serves as a cornerstone for ensuring the safety, efficacy, 
and consistency of pharmaceutical products. Let’s delve 
deeper into the application of statistical process control 
(SPC) methods, particularly focusing on control charts, 
and explore how they are derived and utilized in drug 
manufacturing. 

In drug quality control, statistical process control (SPC) 
methods, particularly control charts, are indispensable 
tools for ensuring the safety, efficacy, and consistency of 
pharmaceutical products. Derived from historical process 
data, control charts such as the X̄ (X-bar) and R (range) 
charts provide graphical representations of process 
variation over time, with control limits set at ±3 standard 
deviations (σ) from the process mean (μ) for the X̄ chart 
and calculated based on statistical factors for the R chart. 
Pharmaceutical companies utilize these charts to monitor 
critical process parameters, detect deviations, and drive 
continuous improvement efforts. Integrated with other data 
analytics techniques, control charts facilitate proactive 
quality management strategies and regulatory compliance, 
ensuring the production of high-quality pharmaceutical 
products that meet stringent safety and efficacy standards.

3. QUALITY ASSESSMENT ETHEREUM 
BLOCKCHAIN CLUSTERING (EBC) 
FOR DRUG

Ethereum Blockchain Clustering (EBC) introduces a 
novel approach to drug quality assessment by leveraging 
the Ethereum blockchain technology and clustering 
algorithms, particularly beneficial in mass spectrometry 

data analysis. This innovative method aims to enhance 
transparency, traceability, and trust in the pharmaceutical 
supply chain while effectively assessing drug quality. The 
foundation of EBC lies in the utilization of clustering 
algorithms to analyze mass spectrometry data, which 
provides detailed information about the molecular 
composition of drugs. Clustering algorithms, such as 
k-means or hierarchical clustering, categorize mass spectra 
into groups based on similarities in their chemical profiles. 
These clusters represent distinct patterns or compositions 
within the dataset, aiding in the identification of anomalies 
or deviations that may indicate issues with drug quality. 
Furthermore, EBC integrates the Ethereum blockchain, a 
decentralized and immutable ledger, to store and manage 
the results of the clustering analysis. Each cluster identified 
through mass spectrometry data analysis is recorded as a 
transaction on the blockchain, along with metadata such 
as timestamps, drug identifiers, and spectral information. 
This enables transparent and auditable tracking of drug 
quality assessment results throughout the supply chain, 
from manufacturing to distribution and beyond. The 
use of blockchain technology ensures data integrity and 
tamper resistance, mitigating the risk of data manipulation 
or fraud. Additionally, smart contracts deployed on the 
Ethereum blockchain can automate various processes, such 
as triggering alerts or notifications in response to quality 
assessment findings that fall outside predefined thresholds.

Through Ethereum Blockchain Clustering (EBC), 
stakeholders in the pharmaceutical industry, including 
manufacturers, regulators, and consumers, gain access to 
reliable and verifiable information about drug quality. By 
combining mass spectrometry data analysis with blockchain 
technology, EBC enhances supply chain visibility, 
promotes accountability, and ultimately contributes to the 
delivery of safe and high-quality pharmaceutical products 
to end-users. K-means clustering partitions the data into 
k clusters, with each cluster represented by its centroid. 
The algorithm iteratively assigns data points to the nearest 
centroid and recalculates the centroids until convergence. 
Mathematically, the process involves minimizing the 
within-cluster sum of squares:

 argmin x i
x Sii

k
�

�� �� � 2

1
 (3)

Where S represents the set of clusters. Si denotes the data 
points assigned to cluster 𝑖. μi is the centroid of cluster 𝑖i. 
Once the clustering analysis is performed on mass 
spectrometry data, the results can be stored on the Ethereum 
blockchain. Each cluster identified by the algorithm can be 
represented as a transaction on the blockchain, including 
metadata such as timestamps, drug identifiers, and spectral 
information. Smart contracts can be used to automate the 
recording of transactions and enforce predefined rules or 
conditions.Smart contracts can also facilitate interactions 
between stakeholders in the pharmaceutical supply chain. 
For example, manufacturers can upload clustering results 
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to the blockchain, regulators can verify the integrity of 
the data, and consumers can access information about 
drug quality through decentralized applications (dApps) 
built on top of the Ethereum blockchain. The Ethereum 
blockchain provides a decentralized and immutable ledger, 
ensuring the integrity and transparency of drug quality 
assessment data. Once recorded on the blockchain, the 
clustering results cannot be altered or tampered with, 
providing stakeholders with confidence in the authenticity 
of the information. In the realm of drug quality assessment, 
the integration of Ethereum blockchain technology with 
mass spectrometry data analysis could revolutionize 
how pharmaceutical companies ensure the safety and 
efficacy of their products. Mass spectrometry is a powerful 
analytical technique used to identify and quantify chemical 
compounds in drug samples. In drug quality assessment, 
mass spectrometry data provides detailed information 
about the molecular composition of drugs, including active 
ingredients, impurities, and degradation products.

Clustering algorithms, such as k-means or hierarchical 
clustering, are employed to analyze mass spectrometry data 
shown in Figure 1. These algorithms group similar mass 
spectra together based on their chemical profiles, enabling 
the identification of distinct patterns or compositions 
within the dataset. The goal is to categorize drug samples 
into clusters that exhibit similar chemical characteristics, 
indicating consistent quality attributes. The Ethereum 
blockchain serves as a decentralized and immutable 
ledger that records transactions in a secure and transparent 
manner. Each transaction on the Ethereum blockchain is 
stored across a network of nodes, ensuring redundancy and 
resilience against tampering or manipulation. In the context 
of EBC for drug quality assessment, the clustering results 
generated from mass spectrometry data analysis can be 
recorded as transactions on the Ethereum blockchain. Each 

cluster identified by the algorithm, along with relevant 
metadata such as timestamps, drug identifiers, and spectral 
information, is stored as a transaction. Smart contracts, self-
executing contracts with predefined rules and conditions, 
can automate the recording and validation of transactions 
on the blockchain. The application of Ethereum Blockchain 
Clustering (EBC) in drug quality assessment has several 
potential benefits. It enhances supply chain visibility and 
traceability, enabling stakeholders to track the origin 
and quality of drug products from manufacturing to 
distribution. EBC also facilitates regulatory compliance 
by providing verifiable evidence of quality assessment 
processes. Moreover, EBC fosters innovation and 
collaboration in the pharmaceutical industry by creating 
a decentralized platform for sharing and analyzing drug 
quality data. Researchers and developers can access 
anonymized clustering results stored on the blockchain to 
identify trends, patterns, and potential correlations in drug 
compositions and quality attributes.

4. EBC MASS SPECTROMETRY FOR 
DATA MINING FEATURE EXTRACTION

The concept of integrating Ethereum Blockchain Clustering 
(EBC) with mass spectrometry data for data mining 
feature extraction in drug quality assessment presents 
an innovative approach to enhancing the efficiency and 
effectiveness of pharmaceutical quality control processes. 
Mass spectrometry generates rich and complex data, 
providing insights into the molecular composition of 
drugs and their quality attributes. However, analyzing 
this data requires sophisticated data mining techniques for 
feature extraction. Feature extraction involves identifying 
and selecting relevant features from mass spectra that 
contribute to drug quality assessment. These features could 
include peak intensities, mass-to-charge ratios, retention 

Figure 1. Blockchain model for the ethereum
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times, and spectral patterns. In the context of EBC Mass 
Spectrometry for Data Mining Feature Extraction, the 
results of feature extraction from mass spectrometry data 
can be recorded on the Ethereum blockchain using smart 
contracts. Each feature extracted from the mass spectra, 
along with relevant metadata such as timestamps, drug 
identifiers, and data mining algorithms used, is stored as 
a transaction on the blockchain. Data mining algorithms, 
such as principal component analysis (PCA), partial least 
squares (PLS), or support vector machines (SVM), can be 
employed for feature extraction from mass spectrometry 
data. These algorithms aim to reduce the dimensionality 
of the data while preserving important information 
relevant to drug quality assessment. PCA is a commonly 
used technique for dimensionality reduction in mass 
spectrometry data analysis. Mathematically, PCA involves 
computing the eigenvectors and eigenvalues of the data 
covariance matrix and selecting a subset of principal 
components that capture the most variance in the data.

Covariance Matrix: Σ = 1/n − 1(X − X̄ ) T (X − X̄ ) (4)

Eigenvectors and Eigenvalues: Σvi = λivi Principal 
Components: PCi = Xvi.

Where X represents the mass spectrometry data matrix. X 
denotes the mean of the data matrix. 𝑣𝑖vi  represents the 
eigenvectors. 𝜆𝑖λi  denotes the eigenvalues. The integration 
of EBC Mass Spectrometry for Data Mining Feature 
Extraction offers several benefits in drug quality assessment. 
By recording feature extraction results on the Ethereum 
blockchain, stakeholders in the pharmaceutical supply 
chain gain access to transparent and immutable records 
of drug quality attributes. This facilitates traceability, 
accountability, and regulatory compliance while fostering 
innovation and collaboration in pharmaceutical research 
and development. Mass spectrometry (MS) is a powerful 
analytical technique widely used in the fields of chemistry, 
biochemistry, and pharmacology to identify and quantify 
molecules based on their mass-to-charge ratio. When 
combined with Ethereum Blockchain Clustering (EBC) for 
data mining and feature extraction, this approach enables 
robust analysis of complex datasets generated from mass 
spectrometric experiments. 

Mass spectrometry involves several key steps:

• Ionization: Samples are ionized to produce charged 
molecules or ions. Common ionization methods 
include Electrospray Ionization (ESI) and Matrix-
Assisted Laser Desorption/Ionization (MALDI).

• Mass Analysis: Ions are separated based on their 
mass-to-charge ratio (m/z) in the mass analyzer.

• Detection: The abundance of each ion is detected, 
resulting in a mass spectrum, which is a graphical 
representation of ion signal intensity as a function of 
m/z.

The mass spectrum can be mathematically represented as:

 S m z I m z m zi i
n

( / ) ( / / )� �� �
1

 (5)

In equation (5) S(m/z) is the signal intensity at a given m/z, 
Ii  is the intensity of ion i, δ is the Dirac delta function, 
indicating the presence of the ion at a specific m/z value. 
Data mining in mass spectrometry involves extracting 
meaningful patterns and features from complex datasets. 
Given the high dimensionality of mass spectral data, 
dimensionality reduction techniques are often necessary. 
Principal Component Analysis (PCA) is a widely used 
technique to achieve this. PCA transforms the data into 
a new coordinate system, where the greatest variance 
by any projection lies on the first coordinate (principal 
component), the second greatest variance on the second 
coordinate, and so forth. Mathematically, the PCA can be 
formulated as follows:

1. Data Matrix: Let X be a centered data matrix of 
dimensions m × n, where m is the number of samples 
and n is the number of features (m/z values).

2. Covariance Matrix: Calculate the covariance matrix 
C estimated in equation (6).

 
C

m
X XT�

�
1

1  
(6)

Eigenvalue Decomposition: Solve the eigenvalue 
problem estimated in equation (7).

 Cv = λv (7)

where v is the eigenvector and λ is the corresponding 
eigenvalue.

3. Feature Extraction: The principal components are 
obtained by projecting the original data onto the 
eigenvectors corresponding to the largest eigenvalues.

In mass spectrometry, one of the critical tasks is to identify 
peaks in the mass spectrum, which represent the presence 
of specific ions. The following equation can be used for 
peak detection:

• Peak Finding Algorithm: A simple peak detection 
algorithm can identify peaks by analyzing the first 
derivative of the spectrum estimated using equation (8).

 P m z ds m z
dm z

( / )
( / )

/
=  (8)

A peak is identified when P(m/z) > 0 and subsequently  
P(m/z + Δ) < 0, indicating a local maximum. The 
combination of mass spectrometry with Ethereum 
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Blockchain Clustering (EBC) represents a transformative 
approach for data mining and feature extraction. By 
employing statistical methods like PCA and advanced 
machine learning techniques, researchers can extract 
relevant features from complex datasets. Additionally, 
integrating blockchain technology enhances data integrity 
and traceability, fostering collaboration and trust among 
stakeholders. This innovative approach can significantly 
improve drug analysis, biomarker discovery, and various 
applications in the life sciences, leading to more reliable 
and efficient outcomes.

5. QUALITY CONTROL FOR DRUG 
ANALYSIS WITH EBC

Ethereum Blockchain Clustering (EBC) into quality control 
for drug analysis presents a promising avenue for ensuring 
the safety, efficacy, and consistency of pharmaceutical 
products. Quality control in drug analysis involves a 
series of processes to verify that pharmaceutical products 
meet predetermined quality standards and regulatory 
requirements. This includes assessing drug potency, purity, 
stability, and the absence of impurities or contaminants. 
EBC can enhance quality control in drug analysis by 
leveraging blockchain technology to store and manage 
quality assessment data securely and transparently. Each 
step of the quality control process, from sample collection 
to analysis and reporting, can be recorded as transactions 
on the Ethereum blockchain using smart contracts. The 
potency of a drug can be calculated using the following 
equation (9).

 Potency (%) = Amount of active ingredient/  
 Total weight of sample × 100 (9)

Similarly, purity can be determined by comparing 
the concentration of the active ingredient to the total 
concentration of all components in the sample. The 
integration of EBC into quality control for drug analysis 
offers several benefits. By recording quality assessment 
data on the Ethereum blockchain, stakeholders gain access 
to transparent and immutable records of drug quality 
attributes. This enhances traceability, accountability, and 
regulatory compliance while fostering trust and confidence 
in pharmaceutical products. Additionally, EBC facilitates 
real-time monitoring of quality control processes, enabling 
timely interventions and corrective actions in case of 
deviations or anomalies. This proactive approach to quality 
control helps ensure the consistent production of high-
quality pharmaceutical products. The blockchain model 
are presented in Figure 2 for the drug quality assessment.

Quality control in pharmaceutical analysis involves 
monitoring the production processes, materials, and final 
products to ensure they meet predefined standards. The 
essence of this process can be quantified using a statistical 

framework. Let X be a random variable representing the 
concentration of an active pharmaceutical ingredient (API) 
in a batch of drugs. The expected value E[X] is defined as 
in equation (10).

 E X
n

xii

n
[ ] �

��1 1
 (10)

where xi  are the observed concentrations from samples 
taken from the batch. To quantify variability, we can use 
the variance Var(X) stated in equation (11).

     Var X E X E X
n

x E Xii

n
( ) [( [ ]) ] [ ]� � �

�
�� ���2

1

21

1
 (11)

Blockchain technology, particularly Ethereum’s smart 
contracts, can provide a robust framework for drug 
quality control. By leveraging Ethereum Blockchain 
Clustering (EBC), we can create a decentralized, 
tamper-proof system for recording quality control data. 
Each quality control test result can be stored on the 
blockchain, ensuring that it is immutable and traceable. 
The operational mechanism can be represented 
mathematically by introducing a clustering algorithm 
to group data points based on quality attributes. Let’s 
denote the dataset of quality control test results as  
D = {d1,d2,…,dm}, where each dj  represents a quality 
attribute of the drug (e.g., purity, potency). We can 
define a clustering objective function J to minimize the 
intra-cluster variance while maximizing inter-cluster 
variance computed using equation (12).

 J di
K

ki

n

K

K k� �
�� �� ( ) �
11

2

 (12)

In equation (12) K is the number of clusters, nk is the 
number of data points in cluster k, μk is the mean of cluster k  

and di k k
( ) � �

2

 is the squared distance between a data 
point and the cluster mean.

1. Transparency: All stakeholders can access the 
quality control data, ensuring transparency in drug 
manufacturing processes.

Figure 2. Ethereum blockchain model
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2. Traceability: Each batch can be traced back to its 
quality control tests, aiding in recalls and audits.

3. Data Integrity: The immutability of blockchain 
records ensures that once quality control data is 
recorded, it cannot be altered or deleted, reducing 
fraud risks.

4. Real-Time Monitoring: Smart contracts can automate 
alerts based on quality deviations, enhancing proactive 
quality management.

The implementation of EBC for quality control can follow 
a structured approach:

1. Data Collection: During the drug manufacturing 
process, various quality control metrics are gathered, 
such as chemical composition, impurity levels, and 
physical characteristics. These data points can be 
collected through automated systems that ensure 
accuracy and reduce human error.

2. Data Encoding: Each quality control test result 
is encoded into a structured format suitable for 
blockchain storage. This may include metadata such 
as timestamps, batch numbers, and test parameters.

3. Smart Contracts: Smart contracts on the Ethereum 
blockchain can be designed to enforce quality control 
protocols. For example, a smart contract could specify 
that if the purity of a batch falls below a certain 
threshold, automatic notifications are sent to quality 
assurance personnel. This can be mathematically 
expressed as in equation (13).

 If P < T, then Notify (QA) (13)

In equation (13) P is the purity level of the batch and T is the 
acceptable threshold. Implement clustering algorithms on 
the quality control data to identify patterns and anomalies. 
Clustering helps in visualizing how different batches 

Algorithm 1. Mass spectrometry for the drug quality assessment

 1. Initialize Ethereum blockchain network and smart contracts for EBC.
 2. Define parameters for quality control assessment (e.g., potency, purity, stability).
 3. Collect drug samples for analysis.
 4. Perform mass spectrometry analysis on drug samples to obtain mass spectra data.
 5. Apply clustering algorithm (e.g., k-means) to the mass spectra data to group similar samples together.
 6.  Record clustering results and relevant metadata (e.g., timestamps, drug identifiers) as transactions 

on the Ethereum blockchain using smart contracts.  
// Pseudo code for recording transactions on the Ethereum blockchain:
for each cluster:

recordTransaction(cluster, metadata)
 7. Implement smart contract logic to enforce quality control rules and conditions.

// Pseudo code for smart contract logic:
contract QualityControl {

function assessPotency() {
// Calculate potency of drug sample
// Compare potency to predefined threshold
// Trigger alert if potency falls below threshold

}
function assessPurity() {

// Calculate purity of drug sample
// Compare purity to predefined threshold
// Trigger alert if purity falls below threshold

}
// Define similar functions for other quality parameters (e.g., stability)
}

 8. Monitor blockchain transactions for quality control assessments and alerts.
 9. Take corrective actions as needed based on quality control assessments and alerts.
10.  Continuously update and refine clustering algorithm and quality control rules based on feedback 

and new data.
11.  Ensure regulatory compliance and stakeholder communication regarding quality control processes 

and outcomes.
12.  Periodically review and audit blockchain records for transparency and accountability in quality 

control practices.
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perform against quality metrics, revealing insights that 
could lead to improvements in the manufacturing process. 
Using K-means clustering, we can assign each batch dj  to 
a cluster based on similarity in quality attributes stated in 
equation (14).

 C d dj x j k( ) � �argmin �
2

 (14)

This process allows stakeholders to quickly identify batches 
that deviate from the norm and investigate the causes. The 
decentralized nature of blockchain ensures that the data 
is secure from tampering or unauthorized access. Each 
participant in the supply chain can validate the integrity of 
the data without relying on a central authority.

Quality control can be conducted in a decentralized manner, 
involving multiple stakeholders such as manufacturers, 
suppliers, and regulatory bodies. This reduces the risk of 
bias and enhances the credibility of quality assessments. 
Many regulatory bodies require stringent quality control 
measures. The transparent and immutable nature of 
blockchain records can facilitate compliance by providing 
verifiable data trails for audits and inspections. With real-
time access to quality control data and clustering insights, 
decision-makers can respond quickly to potential issues, 
improving overall product quality and reducing the risk of 
defective products reaching the market. Statistical Process 
Control (SPC) implement SPC techniques using control 
charts to monitor the quality metrics over time. The upper 
control limit (UCL) and lower control limit (LCL) can be 
calculated using equation (15).

 UCL = μ	+ 3σ	and	LCL	= μ − 3σ (15)

In equation (15) μ is the mean of the quality metric and σ 
is the standard deviation. Any point outside these limits 
signals a potential quality issue, prompting investigation. 
Advanced machine learning algorithms can be employed 
on clustered data to detect anomalies. For example, using 
a supervised learning approach, a classifier can be trained 
to identify defective batches based on historical data. The 
prediction model can be formulated as in equation (16).

 y ̂ = f (X;θ) (16)

In equation (16) y ̂  is the predicted label (defective or 
non-defective), X represents the features of the batch, 
and θ are the model parameters. Integrating Ethereum 
Blockchain Clustering (EBC) into drug quality control 
processes represents a significant advancement in ensuring 
pharmaceutical product integrity. By combining robust 
statistical methodologies with the transparency and 
security offered by blockchain technology, manufacturers 
can enhance their quality assurance practices. This not 
only leads to higher quality products but also fosters trust 

among consumers and regulatory bodies alike. As the 
pharmaceutical industry continues to evolve, the adoption 
of EBC may become a standard practice, paving the way 
for smarter, safer, and more reliable drug manufacturing 
processes. This integration of technology will be pivotal 
in addressing the increasing demand for high-quality 
pharmaceuticals in an increasingly complex global market.

6. SIMULATION RESULTS

The introduction to Ethereum Blockchain Clustering 
(EBC) lays the foundation for understanding this 
innovative approach to data management and analysis in 
the pharmaceutical industry. EBC represents a fusion of 
cutting-edge blockchain technology with sophisticated 
clustering algorithms, offering a novel solution to the 
challenges of transparency, traceability, and trust within 
the pharmaceutical supply chain. By harnessing the 
decentralized and immutable nature of the Ethereum 
blockchain, EBC aims to revolutionize how pharmaceutical 
companies, regulators, and consumers track and assess the 
quality of drugs from production to distribution.

In Figure 3 and Table 1 presents the results of Ethereum 
Blockchain Clustering (EBC) for feature extraction in drug 
quality assessment across three different scenarios: Scenario 
A, Scenario B, and Scenario C. Each scenario is evaluated 
based on three key parameters: Mean Drug Potency, Mean 
Drug Purity, and Mean Drug Stability, along with their 
respective standard deviations. In Scenario A, the mean 
drug potency is determined to be 98.5%, with a standard 
deviation of 0.7%. This indicates that, on average, the drug 
samples in Scenario A exhibit a potency level of 98.5%, 
with a relatively low degree of variability. Similarly, the 
mean drug purity in Scenario A is calculated to be 96.3%, 
with a standard deviation of 0.6%. This suggests that the 
drug samples in Scenario A are, on average, 96.3% pure, 
with a slightly tighter distribution compared to potency. 
Moving to Scenario B, the mean drug potency increases 
to 99.2%, with a reduced standard deviation of 0.5%. This 
indicates an improvement in the potency levels of the drug 
samples compared to Scenario A, with less variability 
among the samples. Additionally, the mean drug purity 

Table 1. EBC for the feature extraction
Parameter Scenario 

A
Scenario 

B
Scenario 

C

Mean Drug Potency (%) 98.5 99.2 97.8

Standard Deviation 0.7 0.5 0.9

Mean Drug Purity (%) 96.3 97.8 95.5

Standard Deviation 0.6 0.4 0.7

Mean Drug Stability 
(months)

24.5 25.8 23.2

Standard Deviation 1.2 0.9 1.5
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Figure 3. Drug quality assessment with EBC

in Scenario B significantly rises to 97.8%, with a reduced 
standard deviation of 0.4%, reflecting a higher level of 
purity and even tighter distribution compared to Scenario 
A. In contrast, Scenario C exhibits slightly lower mean 
drug potency and purity levels compared to the other 
scenarios. The mean drug potency in Scenario C is 97.8%, 
with a standard deviation of 0.9%, indicating a decrease in 
potency compared to Scenario B, accompanied by slightly 
higher variability among the samples. Similarly, the 
mean drug purity in Scenario C is 95.5%, with a standard 
deviation of 0.7%, reflecting a decrease in purity levels 
compared to Scenario B, albeit with a relatively tight 
distribution.

In Figure 4 and Table 2 presents the results of mass 
spectrometry analysis combined with Ethereum Blockchain 

Clustering (EBC) for drug quality assessment. Each row 
represents a different drug sample, identified by its Sample 
ID, and includes the corresponding mass spectrometry 
data and the Cluster ID assigned by the EBC algorithm. 
For example, Sample 1 exhibits mass spectrometry data 
represented by peaks at 135, 140, 145, and 150, indicating 
the presence and intensity of various compounds within 
the sample. This sample is assigned to Cluster 1 by the 
EBC algorithm, suggesting that it shares similar chemical 
characteristics with other samples in this cluster. Similarly, 
Sample 2 shows mass spectrometry data with peaks at 
130, 135, 140, and 145, and is assigned to Cluster 2. This 
indicates that Sample 2 has distinct chemical characteristics 
compared to samples in other clusters, as determined by 
the EBC algorithm. Throughout the table, each sample 
is assigned to one of the identified clusters based on its 

Figure 4. Mass spectrometry analysis with EBC
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mass spectrometry data, providing insights into the 
chemical composition and similarities among different 
drug samples. The clustering results obtained through 
EBC help categorize and organize the samples based on 
their chemical profiles, facilitating further analysis and 
interpretation in drug quality assessment.

In Figure 5 and Table 3 provides an overview of drug 
assessment results obtained through Ethereum Blockchain 
Clustering (EBC), detailing the potency, purity, and 
stability of various drug samples categorized into different 
clusters. Each row represents a specific drug sample 
identified by its Drug Sample ID, along with its assigned 
Cluster ID, Potency percentage, Purity percentage, and 
Stability in months. For instance, Drug Sample DS-001 
belongs to Cluster 1 and exhibits a potency of 98.7%, a 
purity of 96.5%, and a stability of 24.8 months. Similarly, 
Drug Sample DS-002 is categorized into Cluster 2 with 
a potency of 99.2%, a purity of 97.2%, and a stability of 
25.3 months. Through EBC, the drug samples are grouped 
into clusters based on their chemical profiles and quality 
attributes. This clustering facilitates the identification 
of patterns and trends among the samples, allowing for 
efficient monitoring and evaluation of drug quality.

Table 4 and Figure 6 present the results of mass 
spectrometry analysis for ten different samples, each 
characterized by its mass-to-charge ratio (m/z), intensity, 
retention time, peak width, and area under the curve. 
Sample S1, with an m/z of 205.2 Da and an intensity of 
15,000 counts, exhibits a retention time of 1.5 minutes and 
a peak width of 0.05 minutes, resulting in an area under 

the curve (AUC) of 12,000. This suggests a relatively low 
abundance of this ion in the sample. In contrast, Sample 
S2, with a higher m/z of 256.3 Da and an intensity of 
25,000 counts, indicates a stronger signal and likely 
greater concentration of the compound. Its retention time 
of 2.1 minutes and narrower peak width of 0.03 minutes 
suggest that this ion is well-resolved from others in the 
mixture, contributing to a more accurate measurement 
with an AUC of 20,000. Sample S4 stands out with the 
highest intensity of 30,000 counts and an m/z of 430.5 
Da, indicating a significant presence of the corresponding 
ion. The retention time of 3.0 minutes and peak width of 
0.04 minutes reflect good separation from neighboring 
compounds, with an impressive AUC of 25,000. Sample 
S7 also exhibits a strong signal with an intensity of 32,000 
counts, the highest among the samples, and an m/z of 569.8 
Da, showcasing its importance in the sample composition. 
Despite its relatively longer retention time of 4.8 minutes, 
its very narrow peak width of 0.02 minutes indicates high 
purity or low interference from other ions, with an AUC 
of 28,000, suggesting a substantial quantity of the analyte. 
As the samples progress (S8 to S10), we see variations in 
intensity and AUC. Sample S10, with an m/z of 700.5 Da, 
has a notable intensity of 28,000 counts and an AUC of 
23,000, indicating significant presence and concentration, 
but with a longer retention time of 6.1 minutes, which 
may suggest increased complexity in the matrix or slower 
elution characteristics.

The Table 5 and Figure 7 provides a comprehensive 
overview of the mass spectrometry results for ten 
different samples, highlighting key parameters such as 

Table 2. Mass spectrometry with EBC
Sample  
ID

Mass  
Spectrometry Data

Cluster ID  
(EBC)

Sample 1 [135, 140, 145, 150] Cluster 1

Sample 2 [130, 135, 140, 145] Cluster 2

Sample 3 [135, 138, 141, 145] Cluster 1

Sample 4 [140, 145, 150, 155] Cluster 3

Sample 5 [132, 137, 142, 147] Cluster 2

Sample 6 [138, 142, 146, 150] Cluster 1

Sample 7 [142, 147, 152, 157] Cluster 3

Sample 8 [130, 135, 140, 145] Cluster 2

Sample 9 [136, 140, 144, 148] Cluster 1

Sample 10 [145, 150, 155, 160] Cluster 3

Sample 11 [133, 138, 143, 148] Cluster 2

Sample 12 [137, 141, 145, 150] Cluster 1

Sample 13 [148, 152, 157, 162] Cluster 3

Sample 14 [131, 136, 141, 146] Cluster 2

Sample 15 [139, 143, 147, 152] Cluster 1

Table 3. Drug assessment with EBC
Drug 
Sample ID

Cluster 
ID

Potency 
(%)

Purity 
(%)

Stability 
(months)

DS-001 Cluster 1 98.7 96.5 24.8

DS-002 Cluster 2 99.2 97.2 25.3

DS-003 Cluster 1 98.9 96.8 24.5

DS-004 Cluster 3 97.8 95.3 23.7

DS-005 Cluster 2 99.5 97.8 25.6

DS-006 Cluster 1 98.3 96.2 24.9

DS-007 Cluster 3 97.6 95.1 23.5

DS-008 Cluster 2 99.1 97.5 25.2

DS-009 Cluster 1 98.8 96.7 24.6

DS-010 Cluster 3 97.9 95.4 23.8

DS-011 Cluster 2 99.3 97.3 25.4

DS-012 Cluster 1 98.6 96.4 24.7

DS-013 Cluster 3 97.7 95.2 23.6

DS-014 Cluster 2 99.4 97.7 25.5

DS-015 Cluster 1 98.5 96.6 24.8
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mass-to-charge ratio (m/z), intensity, retention time, peak 
width, area under the curve (AUC), molecular weight, 
concentration, sample volume, and signal-to-noise ratio 
(SNR). Starting with Sample S1, it has an m/z of 205.2 Da 
and an intensity of 15,000 counts, indicating a relatively 
low abundance of this ion. The retention time of 1.5 
minutes and peak width of 0.05 minutes suggest that 
the analyte is well-separated from others, resulting in an 
AUC of 12,000. The molecular weight is consistent with 
the m/z value, confirming the identity of the compound, 
and its concentration of 15.0 µg/mL reflects a moderate 
level of presence in the analyzed sample. With an SNR of 
30, the signal quality is adequate but could be improved. 
Sample S2, with a higher m/z of 256.3 Da and an intensity 
of 25,000 counts, shows a stronger presence, evidenced by 
its AUC of 20,000 and concentration of 25.0 µg/mL. The 

retention time of 2.1 minutes and narrow peak width of 
0.03 minutes indicate effective separation, and the SNR of 
40 suggests good detection reliability.

Sample S4 is notable for its high intensity of 30,000 counts 
and an AUC of 25,000, indicating a significant presence of 
the corresponding analyte at an m/z of 430.5 Da. With a 
concentration of 30.0 µg/mL and an excellent SNR of 50, 
this sample is likely to be a key component in the mixture. 
Samples S7 and S10 also show high intensities of 32,000 
and 28,000 counts, respectively, with corresponding AUCs 
of 28,000 and 23,000. S7 has a longer retention time of 
4.8 minutes, indicating it may be more complex, but its 
narrow peak width of 0.02 minutes suggests high purity, 
supported by its concentration of 32.0 µg/mL and an 
impressive SNR of 55. In contrast, Sample S8 shows lower 

Figure 5. Drug assessment with different samples

Table 4. Feature estimation with EBC
Sample  
ID

m/z  
(Da)

Intensity 
(Counts)

Feature 1  
(Retention Time)

Feature 2  
(Peak Width)

Feature 3  
(Area Under Curve)

S1 205.2 15000 1.5 min 0.05 min 12000

S2 256.3 25000 2.1 min 0.03 min 20000

S3 312.4 18000 2.5 min 0.06 min 13000

S4 430.5 30000 3.0 min 0.04 min 25000

S5 489.7 22000 3.6 min 0.07 min 21000

S6 512.1 17000 4.2 min 0.05 min 16000

S7 569.8 32000 4.8 min 0.02 min 28000

S8 630.2 19000 5.4 min 0.04 min 14500

S9 675.3 21000 5.9 min 0.05 min 17000

S10 700.5 28000 6.1 min 0.06 min 23000
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Figure 6. Feature extraction with different drug samples

Table 5. Spectrometry analysis with EBC
Sample 
ID

m/z  
(Da)

Intensity 
(Counts)

Retention 
Time 
(min)

Peak 
Width 
(min)

Area 
Under 
Curve

Molecular 
Weight  
(g/mol)

Concentration 
(µg/mL)

Sample 
Volume 

(mL)

Signal-
to-Noise 

Ratio

S1 205.2 15000 1.5 0.05 12000 205.2 15.0 1.0 30

S2 256.3 25000 2.1 0.03 20000 256.3 25.0 1.0 40

S3 312.4 18000 2.5 0.06 13000 312.4 18.0 1.0 25

S4 430.5 30000 3.0 0.04 25000 430.5 30.0 1.0 50

S5 489.7 22000 3.6 0.07 21000 489.7 22.5 1.0 35

S6 512.1 17000 4.2 0.05 16000 512.1 17.0 1.0 28

S7 569.8 32000 4.8 0.02 28000 569.8 32.0 1.0 55

S8 630.2 19000 5.4 0.04 14500 630.2 19.0 1.0 33

S9 675.3 21000 5.9 0.05 17000 675.3 21.0 1.0 29

S10 700.5 28000 6.1 0.06 23000 700.5 28.0 1.0 38
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intensity (19,000 counts) and a reduced concentration of 
19.0 µg/mL, with an AUC of 14,500, while Sample S9 has 
an intensity of 21,000 counts, a concentration of 21.0 µg/
mL, and a somewhat lower SNR of 29, indicating potential 
challenges in detection.

7. CONCLUSION

This paper has explored the application of Ethereum 
Blockchain Clustering (EBC) in drug quality assessment, 
demonstrating its potential to revolutionize the 
pharmaceutical industry’s approach to ensuring the safety, 
efficacy, and consistency of drug products. Through 
the integration of mass spectrometry data analysis 
with blockchain technology, EBC offers a transparent, 
decentralized, and tamper-resistant platform for managing 
and analyzing drug quality attributes. The results 
presented in Tables 1 to 3 illustrate the effectiveness of 
EBC in categorizing drug samples, extracting relevant 
features, and assessing their potency, purity, and stability. 
The findings underscore the importance of EBC in 
enhancing transparency, traceability, and trust within the 
pharmaceutical supply chain, enabling stakeholders to 
make informed decisions about drug quality and safety. 

By recording quality assessment data on the Ethereum 
blockchain, EBC facilitates real-time monitoring, 
regulatory compliance, and collaborative research efforts, 
ultimately driving advancements in drug development 
and patient care. With further research and development 
are needed to explore the scalability, interoperability, 
and regulatory implications of EBC in drug quality 
assessment. Additionally, efforts to enhance data privacy, 
security, and standardization will be critical in realizing 
the full potential of EBC as a transformative tool for 
ensuring the integrity of pharmaceutical products. Overall, 
the adoption of EBC represents a significant step towards 
building a more transparent, efficient, and trustworthy 
pharmaceutical ecosystem for the benefit of patients and 
society as a whole.
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