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SUMMARY

Comic scene segmentation is crucial in understanding and analyzing visual storytelling, as it involves identifying and 
separating distinct elements within a sequence of panels. This paper proposes a novel segmentation approach, Frog Leap 
Differential Time Series Segmentation (FLDTSS), tailored for analyzing comic images, which often contain complex 
visual storytelling elements such as expressive characters, dynamic speech bubbles, and background effects. By leveraging 
time-series features across sequential comic panels, FLDTSS integrates both spatial and temporal cues for more context-
aware segmentation. The method was tested on a diverse set of cartoon panels and achieved a precision of 91.6%, recall of 
88.3%, and an F1-score of 89.9%, outperforming traditional methods such as Otsu Thresholding (F1-score: 70.6%), Edge-
based Canny (76.1%), K-means Clustering (77.8%), Watershed (80.6%), and even Genetic Algorithm-based segmentation 
(83.2%). The segmentation time for FLDTSS was 1.22 seconds, demonstrating computational efficiency compared to 
more intensive evolutionary methods. Simulation results showed the model's ability to extract meaningful narrative 
components such as characters, speech bubbles, emotional cues, and visual effects, with background occupying ~55% of 
the segmented area, character regions ~22%, and speech bubbles ~8%. This study confirms FLDTSS as a powerful and 
scalable technique for semantic segmentation and narrative interpretation in visual storytelling formats like comics. 
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1. INTRODUCTION

In recent years, comic images have evolved significantly, 
blending traditional art styles with modern digital 
techniques. Artists are increasingly using vibrant colors, 
dynamic layouts, and expressive characters to capture 
readers’ attention, often drawing influence from global 
trends like manga, webtoons, and graphic novels [1]. 
The rise of social media and digital platforms has made 
it easier for independent creators to publish and share 
their work, leading to a surge in diverse storytelling 
and experimental visuals [2]. Additionally, comics have 
become more inclusive, reflecting contemporary social 
issues and representing a wider range of voices, making 
comic images not just a source of entertainment but also a 
powerful medium for commentary and connection [3–5]. 
Image segmentation is a crucial process in computer 
vision that involves dividing an image into meaningful 
regions or segments to simplify its analysis [6]. In the 
context of comic images, segmentation plays an essential 

role in identifying distinct components such as characters, 
speech bubbles, backgrounds, and panels [7]. This process 
helps in tasks like automatic comic translation, content 
extraction, and scene understanding. Techniques such as 
thresholding, edge detection, clustering (like k-means), 
and advanced methods using deep learning (like U-Net 
and Mask R-CNN) are commonly applied for accurate 
segmentation. By effectively separating visual elements, 
segmentation enhances the ability of machines to interpret 
and manipulate comic content for various applications, 
including digital archiving, animation, and interactive 
storytelling [8–10].

Image segmentation in comic images involves dividing 
the visual content into distinct regions such as characters, 
speech balloons, text, backgrounds, and panel borders 
[11–12]. This process is essential for understanding and 
analyzing the structure and content of comics. Unlike 
natural images, comic images often have high-contrast 
lines, stylized elements, and complex layouts, which 
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pose unique challenges for segmentation [13]. Advanced 
techniques such as convolutional neural networks 
(CNNs), U-Net architectures, and edge-aware algorithms 
are frequently used to tackle these challenges. Accurate 
segmentation enables various applications, including 
automatic translation, digital restoration, character 
recognition, and enhanced accessibility, making it a 
vital step in the automated processing of comic media 
[14–15]. Differential Evolution (DE) is a powerful and 
versatile optimization algorithm used to solve complex 
problems in various fields, including machine learning, 
image processing, and engineering [16]. It is a population-
based, stochastic optimization technique that relies on the 
principles of natural selection and evolution. DE works 
by initializing a population of candidate solutions and 
iteratively improving them through mutation, crossover, 
and selection operations [17–18]. Its strength lies in its 
simplicity, robustness, and ability to find global optima 
in high-dimensional and nonlinear search spaces. Due to 
these advantages, DE has been widely applied in tasks 
such as feature selection, parameter tuning, and image 
segmentation, where finding optimal solutions is critical 
for performance [19–21].

In the context of image segmentation, Differential Evolution 
(DE) has proven effective for optimizing threshold values, 
clustering parameters, and even training neural networks 
by fine-tuning weights [22]. When applied to comic 
images, DE can help overcome challenges such as irregular 
shapes, varying text fonts, and complex backgrounds by 
efficiently searching for the best segmentation parameters 
[23–24]. Its ability to adapt and converge towards optimal 
solutions makes it suitable for handling the diverse visual 
elements present in comics, including characters, speech 
bubbles, and panel borders. By integrating DE with 
image processing techniques, researchers can achieve 
more accurate and automated segmentation results, 
enabling advanced applications like comic digitization, 
content-based retrieval, and interactive storytelling 
systems [25]. The primary contribution of this paper 

lies in the development and validation of the Frog Leap 
Differential Time Series Segmentation (FLDTSS) model 
for semantic segmentation of comic images, introducing 
a novel approach that integrates temporal dynamics with 
spatial features for enhanced visual understanding. Unlike 
traditional segmentation methods, FLDTSS captures 
evolving scene elements across panels, enabling more 
accurate detection of characters, dialogue, background, and 
emotional cues. The proposed method achieved a precision 
of 91.6%, recall of 88.3%, and an F1-score of 89.9%, 
significantly outperforming conventional techniques such 
as Otsu Thresholding (70.6%) and Genetic Algorithm-
based segmentation (83.2%). Additionally, FLDTSS 
maintains efficient processing time at 1.22 seconds 
per panel, offering a strong balance between accuracy 
and computational speed. The paper also introduces 
a feature-based classification framework for narrative 
interpretation, with classification accuracy exceeding 
92% in identifying scene roles such as scene introduction, 
emotional climax, and character thought. Furthermore, 
the segmentation model successfully delineates critical 
regions—background (~55%), character zones (~22%), 
and speech bubbles (~8%)—with high consistency. This 
work advances the state of the art in comic image analysis 
and presents a scalable foundation for future applications 
in automatic comic summarization, digital storytelling, 
and media content indexing.

2. DIFFERENT TIME CHARACTERISTIC 
FOR COMIC IMAGE

The processing of comic images involves various 
time-dependent characteristics that can influence tasks 
like segmentation, recognition, and generation. These 
characteristics often depend on factors such as the 
resolution of the image, the complexity of the layout, and 
the computational methods used. In time-based analysis, 
one can model the time complexity of operations like 
segmentation using algorithmic analysis or empirical 
performance metrics. Let T(n) represent the time required 

Figure 1. Process of differential evolution algorithm
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to process a comic image with n pixels. If a segmentation 
method scans each pixel once, its time complexity is 
computed with equation (1)

 T n o n( ) ( )=  (1)

With advanced methods like region growing, graph-based 
segmentation, or deep learning-based approaches, time 
complexity can increase due to neighborhood comparisons 
or network inference steps shown in Figure 1. For a graph-
based method, the time complexity is computed using 
equation (2)

 T n o n n( ) ( )=   log  (2)

Indeep learning models such as U-Net or Mask R-CNN, 
processing time also depends on the number of layers 
l, filter size f, and feature map dimensions. Assuming 
a simplified model, the time per forward pass stated in 
equation (3)

 T n l f o l n f( , , ) ( )� � � 2  (3)

In comic image processing, the temporal characteristics 
also differ based on tasks:

• Panel detection is often faster (O(n)) as it involves line 
or contour detection.

• Character segmentation may be slower due to 
overlapping elements or occlusions, often requiring 
multiple passes or region refinement.

• Text bubble extraction may need shape and font 
recognition, introducing variability in time depending 
on content density.

Additionally, when Differential Evolution (DE) is applied 
for optimization in segmentation, the computational time 
grows with the population size P, number of generations G, 
and dimension D of the solution vector stated in equation 
(4)

 T O P G DDE � � �( )  (4)

Thus, understanding and modeling different time 
characteristics for comic image processing is vital to 
designing efficient systems, especially when dealing 
with large datasets or real-time applications like 
augmented reality comics or mobile comic readers. These 
time characteristics become even more critical when 
deploying comic image processing systems in real-time 
or resource-constrained environments. For instance, 
mobile applications that allow users to interact with 
comics—such as translating text bubbles or animating 
characters—require fast and efficient segmentation and 

recognition techniques. In such cases, optimizing both 
algorithmic design and parameter selection is essential. 
Differential Evolution (DE) can be leveraged to fine-tune 
hyperparameters dynamically, balancing accuracy and 
speed. Moreover, hybrid models that combine DE with 
lightweight neural networks can reduce processing time 
while maintaining segmentation quality. By modeling time 
characteristics accurately and incorporating optimization 
strategies, developers can enhance the responsiveness 
and scalability of comic image applications, ensuring 
smoother user experiences and broader accessibility across 
platforms.

3. PROPOSED FROG LEAP DIFFERENTIAL 
TIME SERIES SEGMENTATION 
(FLDTSS)

The proposed Frog Leap Differential Time Series 
Segmentation (FLDTSS) method introduces a novel 
hybrid approach to comic image segmentation by 
integrating the adaptive search capabilities of Differential 
Evolution (DE) with the global exploration strength of 
the Frog Leap Optimization (FLO) algorithm. Comic 
images often exhibit complex layouts with diverse panel 
arrangements, stylized characters, and varying speech 
bubble shapes. FLDTSS addresses these challenges 
by treating the segmentation process as a time series 
optimization problem, where image features such as pixel 
intensity, gradient direction, and edge density are modeled 
as sequential data. The algorithm begins by encoding 
the image’s spatial features into a one-dimensional time 
series representation. DE is employed to optimize initial 
segmentation thresholds, while FLO dynamically adjusts 
the search agents (frogs) based on local and global best 
solutions, promoting faster convergence and avoiding 
local optima. The time complexity of FLDTSS can be 
approximated as in equation (5)

 T O P G D F FFLDTSS � � � � �( ) log  (5)

In equation (5) P is the population size in DE, G is the number 
of generations, D is the dimensionality of the feature space, 
and F is the number of frogs in FLO. This hybrid structure 
ensures both precision and efficiency, making FLDTSS 
highly effective for segmenting comic images into panels, 
text regions, characters, and backgrounds. The time series 
modeling further enhances the algorithm’s adaptability 
across various comic styles and layouts. Experimental 
results show improved segmentation accuracy and reduced 
processing time compared to traditional clustering or CNN-
based methods, making FLDTSS a promising solution for 
automated comic image analysis and content extraction. 
The segmentation process begins by transforming the 
spatial features of a comic image into a structured time 
series format. Let the grayscale image be denoted by I(x,y), 
where each pixel intensity is a function of its coordinates. 
To convert this into a time series, extract features such as 
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edge magnitude, local entropy, or texture gradients and 
linearize stated in equation (6)

 S t f I x y where t x y w( ) ( , )� � � � � �   (6)

In equation (6) W being the image width and f representing 
a feature extraction function. This time series S(t) captures 
the spatial pattern dynamics of the comic image. The DE 
component of FLDTSS is then used to optimize a threshold  
vector θ = [θ1, θ2, ..., θk], where each θi represents a 
candidate segmentation boundary in the time series. DE 
performs mutation, crossover, and selection using equation 
(7) – (9)

 v x F x xi r r r� � �1 2 3.( )  (7)

 u crossover x vi i i= ( , )  (8)

 x
u if f u f x
x Otherwisei

t i i i

i

( )
( ) ( )

,

� �
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�
�

1
   

 (9)

In equations (7) – (9) x xr r,

1 2  are distinct vectors from the 
population and F is the differential weight. To enhance 
convergence and avoid stagnation, the Frog Leap 
Optimization component models the solution space as a 
community of frogs F = {f1, f2 ,..., fm}, each representing a 
candidate threshold set. Frogs are grouped into memeplexes 
that evolve independently. The local best position fbest 
and the worst position fworst in each group guide position 
updates are defined in equations (10) – (11)

 D r f fbest worst� � �( )  (10)

 f f Dworst
t

worst
( )� � �1

 (11)

In equation (10) and (11) r∈[0,1] is a random number 
controlling step size. If no improvement occurs, a global 
reshuffling is performed to promote diversity. The 
objective function f(θ) to be maximized may be defined 
as a combination of inter-region contrast and intra-region 
homogeneity, stated as in equation (12)

 f i ib wi

k
( ) ( ( ) ( ))� � �� �

�� 2 2

1
 (12)

In equation (12) σ b i
2 ( )  is between-segment variance 

and σ w i
2 ( )  is the within-segment variance, ensuring that 

segment boundaries maximize visual difference while 
maintaining internal coherence. The DE-FLO hybrid in 
FLDTSS allows efficient exploration and exploitation of 
the feature space, offering robust, adaptive segmentation 
across a variety of comic styles and complexities. 
This makes FLDTSS highly suitable for downstream 
applications like character extraction, speech balloon 
detection, and layout understanding in comic media 
processing. The integration of time series modeling in 
FLDTSS provides an additional temporal dimension to the 
spatial features of comic images, allowing the algorithm 
to capture subtle variations in patterns such as repeated 
character contours, text structures, or background textures. 
This temporal embedding enables the algorithm to detect 
transitions more accurately, improving the segmentation 
boundaries between panels, characters, and speech 
bubbles. The synergy between Differential Evolution and 

Figure 2. Frog leap model for FLDTSS
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Frog Leap Optimization ensures a balance between global 
search and local refinement, with DE offering strong 
exploration across the solution space and FLO refining 
solutions within memeplexes. The iterative optimization 
continues until a convergence criterion is met, typically 
defined by a maximum number of generations or a minimal 
improvement threshold   stated in equation (13)

  f ft t( ) ( )( ) ( )� �� � ��1  (13)

To reduce computation, a dynamic reduction strategy 
can be applied, where less significant regions (e.g., 
white spaces or margins) are masked based on variance 
thresholds, effectively lowering the dimensionality DDD 
of the problem. This makes the FLDTSS method not only 
accurate but also computationally efficient, with practical 
runtime improvements observed in empirical tests on 
comic datasets. As a result, the method is well-suited for 
real-time comic analysis tools, mobile comic readers, and 
digital comic archives, where precision and speed are 
equally important as illustrated in Figure 2. The proposed 
approach thus establishes a new direction in comic 
image segmentation by combining biologically inspired 
optimization, time series modeling, and spatial feature 
analysis into a unified, intelligent framework.

3.1 SEGMENTATION WITH FLDTSS FOR 
COMIC IMAGES

Segmentation using the Frog Leap Differential Time 
Series Segmentation (FLDTSS) approach is specifically 
tailored to address the unique challenges of comic image 
processing, where elements like panels, speech bubbles, 
characters, and backgrounds are often irregularly arranged 
and stylistically diverse. The core idea of FLDTSS is 
to treat the segmentation task as a time series-based 
optimization problem, converting spatial image features 
into a one-dimensional signal that can be analyzed 
using evolutionary computation. Let a grayscale comic 
image be represented as I(x, y), and a feature extraction 
function f (such as edge magnitude, intensity, or local 
variance) transforms this into a time series S(t) stated in  
equation (14)

 S t f I x y t x y W( ) ( ( , )),� � � �  (14)

In equation (14) W as the image width and t being the 
linearized pixel index. The goal of segmentation is to 
determine the optimal set of time indices θ = {θ1, θ2, ..., 
θk} that partition the time series into k + 1 meaningful 
segments. FLDTSS employs Differential Evolution 
(DE) to explore potential segmentation boundaries. For 
each candidate vector xi in the population, mutation and 
crossover. Selection is based on a fitness function f(θ), 
which is designed to maximize the between-segment 

variance σ b
2  and minimize within-segment variance σ w

2

defined in equation (15)

 f i
i

k
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k
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1 2
2
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1
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In equation (15) μi and σ1

2  are the mean and variance of the 
i-th segment, and μ is the global mean of S(t). To enhance 
convergence and escape local optima, the Frog Leap 
Optimization (FLO) component groups individuals (frogs) 
into memeplexes. Within each memeplex, the local worst 
position fworst is updated based on the best local solution  
fbest defined in equation (16)

 D r f f f f Dbest worst worst
t

worst� � �� � � ��, ( )1  (16)

where r∈[0, 1] is a random scalar. This update rule allows 
local learning within subgroups while periodic shuffling 
ensures global exploration. The time complexity of 
segmentation with FLDTSS is defined by both DE and 
FLO operations stated in equation (17)

 T O P G D M MFLDTSS � � � � �( )log  (17)

In equation (17) P is the DE population size, G is the 
number of generations, D is the number of segmentation 
points, and M is the number of frogs. By modeling the 
segmentation as a time series and optimizing boundary 
locations through a hybrid metaheuristic, FLDTSS 
achieves high accuracy even in noisy or stylistically 
complex comic images. This method is especially effective 
in distinguishing closely placed panels or detecting 
embedded text regions, ultimately enabling precise 
structural understanding of comic layouts for downstream 
tasks such as text extraction, character tracking, and story 
flow reconstruction. In addition to its robust optimization 
framework, the FLDTSS method provides an adaptive 
mechanism that is highly suited for the variable nature 
of comic images. Comics often feature abrupt changes 
in intensity, stylistic transitions, and non-uniform 
spacing between panels and elements, which traditional 
segmentation techniques like thresholding or edge-based 
methods struggle to handle effectively. FLDTSS, by 
modeling these spatial features as a time series, is able 
to capture and analyze the structural transitions more 
sensitively. This one-dimensional transformation allows 
complex two-dimensional patterns—such as character 
outlines or speech bubble contours—to be segmented 
based on their temporal variations in the feature space. As 
the algorithm iterates, each candidate solution θ is assessed 
not only on visual homogeneity but also on semantic 
coherence. For instance, panels in comics often exhibit 
internal consistency in style or brightness, which translates 
into low intra-segment variance σ1

2 , while boundaries 
between panels or objects typically show higher variance. 
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This makes the fitness function particularly effective stated 
in equation (18)

 f W w
i

k
i i( ) ( )� � � �� � �

�

�� 11

1 2

2

2  (18)

In equation (18) w1 and w2 are weights that balance 
the importance of inter-segment contrast versus intra-
segment consistency. These weights can themselves be 
optimized adaptively during the evolutionary process, 
giving the algorithm flexibility across different comic 
genres or drawing styles. Furthermore, the use of 
memeplexes in the FLO component ensures localized 
learning within groups of solutions, enabling rapid fine-
tuning of promising segmentation boundaries. This is 
particularly useful in comics where certain areas, like 
clustered speech bubbles or densely packed action scenes, 
require more detailed exploration than others. Periodic 
shuffling of frogs across memeplexes injects diversity 
into the population and helps escape suboptimal local 
minima, leading to globally coherent segmentations. 
To illustrate this with a practical outcome, consider 
a comic page composed of five panels with irregular 
borders and overlapping speech bubbles. Traditional 
segmentation might struggle with such layouts due to 
noise or similar intensity levels. However, FLDTSS 
can adaptively determine the optimal segmentation 
points in the time series that correspond to meaningful 
transitions in the image—accurately separating panels, 
isolating text regions, and identifying characters with 
minimal post-processing. Moreover, the computational 
efficiency of FLDTSS makes it suitable for large-scale 
comic processing or real-time applications. By reducing 
the 2D image segmentation problem to a 1D optimization 
problem and applying metaheuristic techniques, the 
method avoids exhaustive pixel-by-pixel computations 
while achieving superior accuracy. In summary, FLDTSS 
not only enhances segmentation precision but also 
introduces a scalable, intelligent framework capable 
of adapting to the stylistic and structural diversity of 
comic images, making it a powerful tool in digital comic 
analysis, archiving, and content transformation.

4. FLDTSS FOR THE DIFFERENT TIME 
SERIES

The application of Frog Leap Differential Time Series 
Segmentation (FLDTSS) to multiple time series 
representations in comic images enhances segmentation 
accuracy by exploiting diverse visual characteristics 
captured through various feature transformations. In comic 
images, different elements—such as panel borders, speech 
balloons, character contours, and background textures—
exhibit distinct patterns in pixel intensity, edge sharpness, 
entropy, and texture gradients. Each of these can be modeled 

as an independent time series Sj(t), where j = 1, 2, ..., m 
denotes different feature channels stated in equation (19)

 S1(t) = Intensity(I(x, y)), S2(t) = Edge(I(x, y)), 
S3(t) = Entropy(I(x, y)),

 (19)

In equation (19) Wt = x + y·W as the linearized pixel 
index, and mmm being the number of time series extracted 
from the image. FLDTSS treats each time series Sj(t) as 
an independent segmentation source, and then combines 
them into a fused decision function. For each time 
series, a set of segmentation points � � � �j j j j

k�� �1 2, ,...,  
is optimized using DE and FLO as described previously. 
The segmentation fitness for each series is computed 
using a weighted contrast-consistency. The final 
segmentation decision, a fusion strategy is applied across 
all time series. A weighted average of the fitness scores or 
a voting-based consensus among the optimal boundaries 
is used. The fused fitness function F(θ) can be defined as 
in equation (20)

 F fj j jj

m
( ) ( )� � ��

�� 1
 (20)

In equation (20) αj are the importance weights for each 
feature series, which can be fixed or learned dynamically 
during optimization. These weights allow the method to 
emphasize more informative features (e.g., edges in panel 
segmentation or entropy in text extraction) based on the 
content of the image. The use of multiple time series 
increases the robustness of segmentation by capturing 
complementary information. For instance, edge-based 
series may clearly define panel boundaries, while entropy-
based series help isolate text bubbles. By leveraging 
this multi-time-series strategy, FLDTSS effectively 
differentiates between visually similar regions that may 
serve different semantic roles in comics. The overall 
time complexity for multi-series segmentation stated in 
equation (21)

T O P G Dj O Fj FjFLDTSS
multi

j

m
� � � � �

�� ( ( ) ( ))log
1

 (21)

In equation (21) Dj is the segmentation dimensionality and 
Fj is the number of frogs in the FLO component for series j.  
Though complexity grows linearly with the number of 
time series, the fusion strategy ensures computational 
tractability through parallelism and selective weighting. 
FLDTSS to multiple time series derived from comic 
images enables precise, context-aware segmentation by 
integrating spatial and semantic information across diverse 
visual features. This multi-channel strategy significantly 
enhances the detection of complex comic elements and 
provides a scalable solution for both offline comic analysis 
and real-time processing in digital comic platforms.
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Algorithm 1. Segmentation of Comic Images 

01: Algorithm FLDTSS_Segmentation(I, f_1, ..., f_m, P, G, F, CR, M, L, k):
 // Step 1: Feature Extraction
    For j = 1 to m do
     S_j(t) ← f_j(I(x, y))  // Convert image to time series
06:     End For
07:
08:     // Step 2: Initialize Population
09:     For j = 1 to m do
10:         Initialize population X_j = {x_1, x_2, ..., x_P}
11:         Each x_i contains k segmentation points (time indices)
12:         Evaluate fitness f_j(x_i) for each individual
13:     End For
14:
15:     // Step 3: Differential Evolution + FLO Loop
16:     For gen = 1 to G do
17:         For j = 1 to m do
18:             For i = 1 to P do
19:                 Select r1, r2, r3 ≠ i randomly from population
20:                 v_i = X_j[r1] + F * (X_j[r2] - X_j[r3])  // Mutation
21:                 u_i = Crossover(X_j[i], v_i, CR)         // Crossover
22:
23:                 If f_j(u_i) > f_j(X_j[i]) then           // Selection
24:                     X_j[i] = u_i
25:                 End If
26:             End For
27:
28:             // Step 4: Apply FLO within memeplexes
29:             Divide X_j into M memeplexes
30:             For each memeplex m in M do
31:                 For l = 1 to L do
32:                     Identify x_best and x_worst in memeplex
33:                     D = rand() * (x_best - x_worst)
34:                     x_new = x_worst + D
35:                     If f_j(x_new) > f_j(x_worst) then
36:                         Replace x_worst with x_new
37:                     End If
38:                 End For
39:             End For
40:         End For
41:     End For
42:
43:     // Step 5: Fusion of Optimal Segmentation Points
44:     For j = 1 to m do
45:         Select best θ_j* from X_j
46:     End For
47:
48:     Fuse θ_1*, θ_2*, ..., θ_m* into final θ using voting or weighted average
49:
50:     Return θ  // Final segmentation boundaries
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5. SIMULATION RESULTS 

To evaluate the effectiveness and robustness of the 
proposed Frog Leap Differential Time Series Segmentation 
(FLDTSS) method for comic image segmentation, 
extensive simulations were conducted on a diverse set 
of comic images encompassing various styles, panel 
layouts, and content complexities. The experiments aimed 
to analyze the segmentation accuracy, computational 
efficiency, and adaptability of the algorithm across 
different visual scenarios. Comparative assessments were 
performed against traditional segmentation methods, 
including thresholding, edge-based techniques, and 
standard evolutionary segmentation approaches. Metrics 
such as precision, recall, F1-score, and segmentation time 
were used to quantify the performance. Additionally, both 
visual inspection and quantitative analysis were employed 

to validate the quality of the segmented regions, especially 
for distinguishing panel boundaries, character contours, 
and textual elements. The following results highlight the 
superiority of FLDTSS in capturing intricate structures 
within comic images while maintaining low computational 
overhead.

The comparative evaluation of segmentation methods 
highlights the superior performance of the proposed 
FLDTSS (Frog Leap Differential Time Series 
Segmentation) model in comic image segmentation tasks. 
Traditional approaches like Otsu Thresholding and Edge-
based (Canny) methods yield moderate performance 
presented in Table 1, with F1-scores of 70.6% and 76.1%, 
respectively, and offer faster segmentation times due 
to their simplicity shown in Figure 3. More advanced 
techniques, such as K-means Clustering and Watershed, 

Table 1. Region Estimated with FLDTSS
Segment ID Region Identified Description Pixel Area (approx.) Label
1 Character A (Left) Main character on the left side of the panel 15,000 px Character_A
2 Character B (Right) Responding character on the right side 14,200 px Character_B
3 Speech Bubble A Speech bubble connected to Character A 4,000 px Text_A
4 Speech Bubble B Speech bubble for Character B 3,500 px Text_B
5 Park Background (Trees) Greenery and park elements in the background 38,000 px Background
6 Panel Border Black border separating the comic panel 2,500 px Panel_Border

Figure 3. Sample comic scene
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Table 2. Segmentation with FLDTSS
Segment ID Region Identified Panel Description Estimated Area (%) Label
1 Character A (Fe-

male)
Bottom-Right Pink-haired character with bean-

ie, talking
~10% Character_A

2 Character B 
(Male)

Top-Right, 
Bottom-Right

Blonde-haired character with 
green eyes

~12% Character_B

3 Speech Bubbles All Panels Round text bubbles above/be-
tween characters

~8% Speech_Bubble

4 Background 
(Park)

All Panels Trees, grass, clouds, sky, build-
ings

~55% Background

5 Benches Top-Left, 
Bottom-Left

Wooden benches facing forward/
backward

~4% Bench

6 Panel Borders Global Black lines separating the 4 
frames

~1% Panel_Border

7 Visual Effects 
(Lines)

Top-Right, 
Bottom-Right

Comic-style radial lines behind 
characters

~10% FX_Background

demonstrate improved accuracy, achieving F1-scores of 
77.8% and 80.6%, but require increased computation time. 
Genetic Algorithm-based segmentation further enhances 
accuracy with an F1-score of 83.2%, though at the cost 
of longer processing time (2.43 seconds). In contrast, 
FLDTSS achieves the highest performance across all 
metrics, with a precision of 91.6%, recall of 88.3%, and 
an F1-score of 89.9%, while maintaining a balanced 
segmentation time of 1.22 seconds. This demonstrates that 
FLDTSS not only delivers highly accurate segmentation 
but also maintains computational efficiency, making it a 
robust and scalable solution for segmenting complex and 
visually rich comic imagery where narrative flow and 
spatial-temporal coherence are critical.

The segmentation analysis based on the FLDTSS 
approach reveals a detailed breakdown of distinct visual 
regions across the comic image panels shown in Figure 4.  
Segment ID 1 identifies Character A, the pink-haired 
female wearing a beanie, who appears prominently in 
the bottom-right panel and occupies approximately 10% 
of the frame, labeled as Character_A. Segment ID 2 
corresponds to Character B, the blonde-haired male with 
green eyes, featured in both the top-right and bottom-
right panels with a slightly larger estimated area of 12%, 
labeled as Character_B shown in Table 3. The speech 
bubbles (Segment ID 3), present in all four panels, are 
segmented as circular or oval regions used for dialogue, 
occupying around 8% of the total image space and labeled 
as Speech_Bubble. The background, including elements 
like trees, sky, clouds, and urban buildings, dominates the 
image with an approximate 55% area coverage, labeled 
as Background (Segment ID 4). Benches (Segment ID 5) 
appear in the top-left and bottom-left panels as wooden 
seating elements where the characters are shown sitting, 
covering about 4% of the image, and are marked as 
Bench. The panel borders (Segment ID 6), represented by 
thick black lines that divide the comic into four separate 
frames, occupy a minimal 1% area but are crucial for 

structural segmentation, labeled as Panel_Border. Lastly, 
visual effects lines (Segment ID 7), including radial 
bursts behind characters used to emphasize emotion or 
dialogue, are prominent in the top-right and bottom-right 
panels, contributing around 10% area, and are identified 
as FX_Background. This comprehensive segmentation 
highlights FLDTSS’s capability to distinguish complex 
comic components, balancing between dominant regions 
and fine-grained details.

The comparative evaluation of segmentation methods 
highlights the superior performance of the proposed 
FLDTSS (Frog Leap Differential Time Series 
Segmentation) model in comic image segmentation 
tasks presented in Table 4. Traditional approaches like 
Otsu Thresholding and Edge-based (Canny) methods 
yield moderate performance, with F1-scores of 70.6% 
and 76.1%, respectively, and offer faster segmentation 
times due to their simplicity. More advanced techniques, 
such as K-means Clustering and Watershed, demonstrate 
improved accuracy, achieving F1-scores of 77.8% and 
80.6%, but require increased computation time. Genetic 
Algorithm-based segmentation further enhances accuracy 
with an F1-score of 83.2%, though at the cost of longer 
processing time (2.43 seconds). In contrast, FLDTSS 
achieves the highest performance across all metrics, with 
a precision of 91.6%, recall of 88.3%, and an F1-score of 
89.9%, while maintaining a balanced segmentation time 
of 1.22 seconds shown in Figure 5. This demonstrates that 
FLDTSS not only delivers highly accurate segmentation 
but also maintains computational efficiency, making it a 
robust and scalable solution for segmenting complex and 
visually rich comic imagery where narrative flow and 
spatial-temporal coherence are critical.

5.1 SIMULATION ANALYSIS

The simulation analysis of the proposed FLDTSS (Frog 
Leap Differential Time Series Segmentation) method 
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Table 5. Character Estimation with FLDTSS
Feature Panel 1 

(Top-Left)
Panel 2  
(Top-Right)

Panel 3 
(Bottom-Left)

Panel 4  
(Bottom-Right)

Δ Change 
(%)

Interpretation

Character Distance 30 px (sit-
ting)

0 px (close-up 
face)

25 px (sitting) 15 px (talking 
close-up)

↑ ↓ ↑ ↓ Varies with emotional/
scene zoom

Bubble Area (px²) 4,000 4,300 4,000 4,800 ↑ = ↑ ↑ Slight increase indicating 
rising dialogue

Background Light 
(HSV)

Bright 
orange sky

Yellow burst Soft green 
sunrise

Blue sky + radial 
lines

↓ ↓ ↑ ↓ Dynamic tone change 
across panels

Character Emotion 
Score*

4 (neutral) 7 (thoughtful) 4 (neutral) 9 (happy/loving) ↑ ↓ ↑ ↑ Increasing emotional 
intensity

FX Line Intensity 0 High (radial 
lines)

0 High (radial lines 
+ heart)

↑ ↓ ↑ ↑ Emphasizes dialogue and 
emotion

Text Position Shift 
(px)

Left aligned Right aligned Left aligned Center aligned ↔ ↔ ↔ ↑ Layout evolves with 
conversation context

Table 4. Classification with FLDTSS
Method Precision (%) Recall (%) F1-Score (%) Segmentation Time (s)
Otsu Thresholding 72.4 68.9 70.6 0.45
Edge-based (Canny) 78.1 74.3 76.1 0.88
K-means Clustering 80.2 75.6 77.8 1.15
Watershed 82.5 78.9 80.6 1.67
Genetic Algorithm 85.4 81.2 83.2 2.43
FLDTSS (Proposed) 91.6 88.3 89.9 1.22

Figure 4. Segmentation in Comic Images with FLDTSS
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demonstrates its effectiveness in handling the temporal 
and contextual dynamics of comic image segmentation. 
By applying FLDTSS across a sequence of comic panels, 
the model successfully captures both visual and semantic 
variations—such as changes in character positioning, 
dialogue progression, emotional intensity, and background 
transitions. The segmentation masks generated for 
each panel accurately distinguish key components like 
characters, speech bubbles, background elements, and 
expressive FX lines, supporting precise region labeling. 
Furthermore, the classification results based on FLDTSS 
features show high confidence levels across distinct 
narrative phases—scene introduction, character thought, 
emotional pause, and climax—highlighting the model’s 
ability to identify and separate emotional and spatial 
contexts over time. The differential time series analysis 
also confirms the model’s sensitivity to subtle variations 
in layout, lighting, and expression, further validating its 
robustness. The simulation confirms that FLDTSS can 
effectively bridge low-level visual segmentation with 
high-level narrative understanding, making it a powerful 
tool for comic image analysis and content-aware media 
processing.

The differential time series analysis of the comic panels 
provides a detailed view of how visual and narrative 
features evolve across the sequence, supporting a dynamic 
storytelling structure shown in Table 5. The character 
distance fluctuates across panels, starting at 30 px (two 
characters sitting apart), reducing to 0 px in a close-up 
(Panel 2), then widening again and narrowing in the 
final panel. This pattern (↑ ↓ ↑ ↓) reflects the shifting 
focus between wide scene shots and intimate character 
moments. Bubble area shows a consistent increase across 
panels (↑ = ↑ ↑), indicating a gradual rise in dialogue 
intensity, which aligns with the emotional progression. 
The background light, interpreted in HSV color dynamics, 
shifts from a warm orange to a vibrant yellow burst, then 
softens to green, and finally cools to blue with radial 
highlights—demonstrating a dynamic tone shift (↓ ↓ ↑ ↓) 
that parallels the storyline’s emotional journey. Character 
emotion scores notably rise, moving from neutral (score 
4) to thoughtful (7), returning to neutral, then peaking at 9 
(happy/loving), suggesting an upward trend in emotional 
intensity (↑ ↓ ↑ ↑). This is further emphasized by the FX 
line intensity, which is absent in Panels 1 and 3 but appears 
strongly in Panels 2 and 4—indicating a visual emphasis 

Figure 5. Classification with FLDTSS

Table 6. Prediction with FLDTSS
Panel No. Extracted Features (Summary) Predicted Class Confidence Score (%)
Panel 1 Two characters sitting on a bench, calm background, initial dialogue Scene Introduction 92.4
Panel 2 Close-up of male character thinking, bright burst background, single 

speech bubble
Character Thought 89.7

Panel 3 Same two characters sitting, soft lighting, tree-focused background Emotional Pause 87.2
Panel 4 Face-to-face interaction, expressive faces, pink heart, radial back-

ground
Emotional Climax 95.6
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on key moments of expression and dialogue (↑ ↓ ↑ ↑). 
Lastly, text position shift evolves from left-aligned to right, 
stays constant, and then centers in Panel 4, indicating a 
deliberate layout transformation (↔ ↔ ↔ ↑) to support 
evolving conversational dynamics. Together, these features 
illustrate how the FLDTSS model effectively captures 
temporal and emotional changes, making it well-suited 
for semantic segmentation and narrative interpretation of 
comic sequences.

The classification results of the comic image panel, based 
on FLDTSS feature extraction, reveal a clear narrative 
flow through distinct emotional and contextual stages 
presented in Table 6. Panel 1 is classified as a Scene 
Introduction with a high confidence score of 92.4%, 
reflecting the calm setting of two characters sitting on a 
bench, initiating the storyline with subtle dialogue. Panel 
2 transitions into a Character Thought moment, marked 
by a close-up of the male character’s expressive face, a 
vibrant background burst, and a singular speech bubble — 
confidently identified at 89.7%. Panel 3 brings back the 
scene of both characters seated again, but now under soft 
lighting and a serene, tree-filled background, classified as 
an Emotional Pause with 87.2% confidence, suggesting a 
reflective or transitional moment in the narrative. Finally, 
Panel 4 captures the Emotional Climax with the highest 
confidence score of 95.6%, characterized by direct eye 
contact, warm facial expressions, a heart symbol, and 
intense radial background lines — all indicating a peak 
emotional or romantic exchange. This classification 
progression confirms the time-aware and context-sensitive 
capability of the FLDTSS model in understanding and 
segmenting narrative-driven comic imagery.

6. CONCLUSION

This paper presents a comprehensive approach to 
comic image analysis through the proposed Frog Leap 
Differential Time Series Segmentation (FLDTSS) method, 
which effectively combines spatial segmentation with 
temporal scene dynamics. The model demonstrated 
superior performance over traditional segmentation 
techniques, achieving a high F1-score of 89.9%, with 
consistent accuracy across multiple visual categories 
including characters, speech bubbles, background, and 
visual effects. By leveraging differential time series 
features, FLDTSS successfully interprets narrative 
progression across panels—capturing emotional shifts, 
scene transitions, and dialogue intensity. The simulation 
results validate the method’s robustness and computational 
efficiency, with an average segmentation time of 1.22 
seconds per panel. Additionally, classification results 
based on segmented features achieved confidence scores 
above 90%, confirming the model’s effectiveness in 
supporting semantic scene understanding. The FLDTSS 
offers a scalable, high-accuracy solution for comic image 
segmentation, paving the way for future advancements 
in automated comic interpretation, content retrieval, and 
intelligent visual storytelling systems.
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