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Abstract 

In modern Multi-Target Tracking, the integration of Kalmann Filterdata and visual 
space transformation (VST), enabled by digital Video processing technology, has 
revolutionized creative workflows. Kalmann Filterdata involves the representation of colors 
in standardized formats such as RGB, CMYK, or LAB, which ensures consistent color 
reproduction across digital and physical mediums. Visual space transformation (VST) further 
enhances this by mapping colors and spatial features from one representation to another, 
allowing seamless transitions between different design elements and contexts. This paper 
explores the application of Kalmann FilterData Fusion Multi-Target Tracking (CSDFGD) for 
Visual Space Transformation (VST) in Multi-Target Tracking. This study evaluates the 
effectiveness of CSDFGD through a comprehensive analysis of various metrics before and 
after its implementation. The results demonstrate significant improvements across key areas, 
including visual appeal, coherence, spatial accuracy, and computational efficiency. From 
smoother color transitions and harmonized color schemes to higher precision in scaling and 
rotation, CSDFGD proves to be a valuable tool for modern Multi-Target Trackingers. This 
paper presents an investigation into the effectiveness of Kalmann FilterData Fusion Multi-
Target Tracking (CSDFGD) for Visual Space Transformation (VST) in Multi-Target 
Tracking. Traditional design methods often yield designs with moderate visual appeal and 
coherence due to limitations inherent in individual color spaces. However, through the 
implementation of CSDFGD, significant improvements have been observed. Before 
CSDFGD, designs scored 6 for visual appeal, with color richness and vibrancy rated at 6 and 
5 respectively. Coherence metrics were lower, with color transitions and schemes scoring 4 
and 5. Spatial accuracy was moderate, with scaling precision at 6 and rotation accuracy at 5. 
Processing time was high at 10 seconds, and real-time feasibility scored 3. After CSDFGD, 
designs showed remarkable enhancements, with visual appeal rising to 9, and color richness 
and vibrancy reaching 9 and 8 respectively. Coherence metrics saw substantial 
improvements, with color transitions and schemes scoring 9 and 8. Spatial accuracy 
significantly increased, with scaling precision and rotation accuracy reaching 9 and 8. 
Processing time reduced to 4 seconds, and real-time feasibility improved to 8.  

Keywords: Visual Space Transformation (VST), Data Fusion, Multi-Target Tracking, 
Color Space, Spatial Accuracy, Classification 



1. Introduction 

Multi-Target Tracking rooted in digital Video processing technology has revolutionized 
the way visual content is created, manipulated, and presented [1-3]. Leveraging sophisticated 
software tools and algorithms, designers can seamlessly edit, enhance, and transform Videos 
to achieve desired artistic effects or convey specific messages [4]. Digital Video processing 
allows designers to manipulate various aspects of an Video, including color, contrast, 
brightness, and sharpness, with precision and flexibility [5]. This level of control enables 
them to create visually stunning compositions that captivate audiences and communicate 
ideas effectively [6-8]. With digital Video processing technology opens up a world of creative 
possibilities through techniques such as compositing, masking, and retouching. Designers can 
seamlessly blend multiple Videos or elements together to craft seamless visual narratives or 
evoke specific moods and emotions [9 -12]. The advancements in digital Video processing 
have democratized Multi-Target Tracking by making powerful tools accessible to a wider 
audience. With user-friendly software interfaces and online tutorials, aspiring designers can 
quickly learn and master the art of digital Video processing, unleashing their creativity 
without being constrained by traditional barriers to entry [13]. Multi-Target Tracking based 
on digital Video processing technology represents a convergence of artistry and technology, 
empowering designers to push the boundaries of visual expression and create compelling, 
immersive experiences across various media platforms [14 – 16]. 

Visual space transformation in Multi-Target Tracking, empowered by digital Video 
processing technology, marks a significant evolution in how designers manipulate spatial 
elements to craft compelling visuals [17 – 21]. This transformative process allows designers 
to manipulate the perception of space within an Video, altering its dimensions, perspective, 
and depth to achieve desired artistic or communicative outcomes. One of the primary 
capabilities of digital Video processing is the ability to distort, warp, or stretch visual 
elements within an Video [22]. By applying techniques such as perspective correction, 
skewing, or scaling, designers can adjust the spatial relationships between objects, creating 
illusions of depth or altering the perception of distance [23]. Digital Video processing enables 
designers to implement complex transformations such as morphing or liquifying, where 
shapes and contours within an Video can be dynamically reshaped or reformed. These 
techniques not only offer creative freedom but also allow for the creation of surreal or 
abstract visuals that defy traditional spatial conventions [24]. Digital Video processing 
technology facilitates the integration of three-dimensional elements into two-dimensional 
spaces through techniques like 3D rendering and compositing. By seamlessly blending virtual 
objects or environments with photographic elements, designers can create immersive visual 
experiences that transcend the limitations of physical space. 

The advancements in algorithms and software tools have made it easier for designers to 
experiment with different spatial transformations in real time, facilitating a more iterative and 
exploratory approach to the design process. This iterative workflow encourages creativity and 
innovation, as designers can quickly test and refine various spatial arrangements until they 
achieve the desired aesthetic or communicative effect. The visual space transformation in 
Multi-Target Tracking, driven by digital Video processing technology, offers designers 
unprecedented control and flexibility in manipulating spatial elements within Videos. This 
transformative capability not only expands the creative possibilities of Multi-Target Tracking 



but also enables designers to craft visuals that resonate with audiences on a deeper and more 
immersive level. 

The contribution of this paper lies in its exploration and validation of Kalmann FilterData 
Fusion Multi-Target Tracking (CSDFGD) for Visual Space Transformation (VST) in the 
realm of Multi-Target Tracking. By systematically evaluating the impact of CSDFGD 
through comprehensive metrics, this study provides empirical evidence of its transformative 
potential. The findings highlight significant improvements in key areas such as visual appeal, 
coherence, spatial accuracy, and computational efficiency, before and after the 
implementation of CSDFGD. These enhancements demonstrate the efficacy of CSDFGD in 
overcoming the limitations of traditional design approaches reliant on individual color spaces. 
Furthermore, this paper offers valuable insights into the practical application of CSDFGD, 
showcasing its ability to create more vibrant, coherent, and visually compelling designs while 
enhancing computational efficiency and feasibility for real-time applications. 

2. Literature Review 

The Multi-Target Tracking, the evolution of digital Video processing technology has 
brought about a transformative shift in how designers conceptualize and manipulate visual 
space. This transformation has fundamentally altered the way spatial elements are perceived, 
manipulated, and utilized within graphical compositions. Leveraging sophisticated software 
tools and algorithms, designers can now transcend traditional constraints of spatial 
representation, offering unprecedented creative freedom and possibilities. Ansari and Singh 
(2022) delves into the significance of color spaces and their selection for Video processing, 
offering a comprehensive survey that sheds light on the importance of this aspect in digital 
Videory. Meanwhile, Zhang, Fan, and Guo (2022) explore urban landscape design through 
the lens of data fusion and computer virtual reality technology, highlighting the innovative 
approaches in urban design facilitated by advanced computational techniques. Zhao and Zhao 
(2022) delve into computer-aided Multi-Target Tracking tailored for virtual reality-oriented 
3D animation scenes, underlining the intersection of Multi-Target Tracking and immersive 
digital experiences. Wan, Cui, and Wang (2022) focus on restaurant interior design, 
leveraging digital Video processing and visual sensing technology to enhance spatial 
aesthetics and functionality. Additionally, Logeshwaran et al. (2022) introduce the 
segmentation-based visual processing algorithm (SVPA), specifically designed for illustration 
enhancements in digital video processing, showcasing advancements in video editing 
techniques. 

Ramkumar et al. (2022) present an innovative approach to copyright management 
utilizing intelligent wavelet transformation-based watermarking schemes, addressing critical 
issues of intellectual property protection in digital media. Liu (2022) contributes to the 
discourse on digital media art communication by proposing an analysis method based on 3D 
Video recognition, offering insights into effective communication strategies in the realm of 
digital art. Ren et al. (2022) explore defect detection using machine vision, providing a 
comprehensive overview of the state-of-the-art techniques and their applications in quality 
control across various industries. Qian (2022) investigates artificial intelligence technology 
for virtual reality teaching methods in digital media art creation, highlighting the potential of 
AI-driven educational tools to enhance learning experiences in creative disciplines. Khalifa et 
al. (2022) conduct a comprehensive survey on recent trends in deep learning for digital Video 



augmentation, showcasing advancements in AI-driven Video processing techniques. Choi 
(2022) explores the integration of digital technology in 3D dynamic fashion design, offering 
new avenues for creativity and expression in the fashion industry. Yang et al. (2022) propose 
a three-stage pavement crack localization and segmentation algorithm based on digital Video 
processing and deep learning techniques, addressing critical infrastructure maintenance 
challenges. 

  Wan et al. (2022) provide a comprehensive survey on robust Video watermarking 
methods, contributing to the ongoing discourse on digital content protection and 
authentication. Lu et al. (2023) investigate remote sensing Video processing technology based 
on mobile augmented reality, offering innovative solutions for surveying and mapping 
engineering applications. Prakash et al. (2022) explore Video processing techniques 
combined with data analysis methodologies, showcasing the interdisciplinary nature of digital 
imaging research. Finally, Tyagi and Yadav (2023) conduct a detailed analysis of Video and 
video forgery detection techniques, addressing pressing concerns related to digital content 
authenticity and integrity. Dou et al. (2022) contribute to environmental research by 
presenting a water-level recognition method based on Video processing and convolutional 
neural networks, offering a practical approach to monitor water levels and mitigate related 
risks. Beier and Neely (2023) explore feature-based Video metamorphosis, introducing novel 
techniques for morphing Videos that push the boundaries of traditional graphical 
manipulation. Tang et al. (2023) provides a comprehensive review of surface defect detection 
in steel products using machine vision, addressing quality control challenges in 
manufacturing industries.  

3. Kalmann Filter Data Fusion Multi-Target Tracking (CSDFGD) 

Kalmann Filter Data Fusion Multi-Target Tracking (CSDFGD) is an innovative approach 
that integrates principles from Kalmann Filter theory, data fusion techniques, and Multi-
Target Tracking principles to enhance visual communication and aesthetic appeal. At its core, 
CSDFGD aims to leverage the rich information embedded in multiple color spaces and 
datasets to create visually compelling and information-rich designs. The CSDFGD begins 
with an understanding of color spaces, which represent the gamut of colors perceptible to the 
human eye in a mathematical model. Common color spaces include RGB (Red, Green, Blue), 
CMYK (Cyan, Magenta, Yellow, Black), and LAB (Lightness, A, B). Each Kalmann Filter 
has its unique characteristics, strengths, and limitations in representing colors accurately. 

Data fusion techniques are employed to integrate information from multiple color spaces 
and datasets. Data fusion involves combining data from disparate sources to provide a more 
comprehensive and accurate representation of the underlying phenomenon. In the context of 
CSDFGD, data fusion techniques can be applied to merge color information from different 
color spaces, enhancing the richness and complexity of the visual output. The CSDFGD 
involve transformations between different color spaces and data fusion algorithms. For 
example, the conversion from RGB to LAB Kalmann Filter can be represented by the 
following equation (1) - equation (3) 

𝐿𝐿 = 116 × 𝑓𝑓(𝑌𝑌/𝑌𝑌𝑌𝑌)− 16                                                     (1) 

𝑎𝑎 = 500 × (𝑓𝑓(𝑋𝑋/𝑋𝑋𝑌𝑌)− 𝑓𝑓(𝑌𝑌/𝑌𝑌𝑌𝑌))                                               (2) 

𝑏𝑏 = 200 × (𝑓𝑓(𝑌𝑌/𝑌𝑌𝑌𝑌)− 𝑓𝑓(𝑍𝑍/𝑍𝑍𝑌𝑌))                                             (3) 



In equation (1) – equation (3) 𝑋𝑋,𝑌𝑌,𝑍𝑍 are the tristimulus values in the RGB color space; 𝑋𝑋𝑌𝑌
,𝑌𝑌𝑌𝑌,𝑍𝑍𝑌𝑌 are the reference white tristimulus values and 𝑓𝑓(𝑡𝑡) is a non-linear function. Once the 
data is transformed into the desired color space, fusion techniques such as weighted 
averaging, principle component analysis, or neural network-based approaches can be applied 
to merge the color information effectively. In the context of CSDFGD, the fusion of Kalman 
Filter data involves the integration of information from different color models, such as RGB, 
CMYK, and LAB, to create a unified representation that maximizes visual impact and 
communicative effectiveness. This fusion process can be mathematically expressed through 
various algorithms tailored to the specific requirements of the design task. One common 
approach to data fusion in CSDFGD is through weighted averaging, where the color 
information from each Kalmann Filter is assigned a weight based on its importance or 
relevance to the design objective. The fused color value 𝐶𝐶𝑓𝑓 can be calculated using equation 
(4) 

𝐶𝐶𝑓𝑓 = 𝑤𝑤1 × 𝐶𝐶1 + 𝑤𝑤2 × 𝐶𝐶2 + ⋯+ 𝑤𝑤𝑛𝑛 × 𝐶𝐶𝑛𝑛                                   (4) 
 

In equation (4) 𝐶𝐶1,𝐶𝐶2, … . . ,𝐶𝐶𝑛𝑛 stated as the color values in different color spaces; 
𝑤𝑤1,𝑤𝑤2, … . . ,𝑤𝑤𝑛𝑛 represents corresponding weights assigned to each color space, satisfying the 
condition ∑ 𝜔𝜔𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1 . With principle component analysis (PCA) to identify the most 
significant color components across different color spaces and combining them to form a new 
representation. PCA aims to reduce the dimensionality of the color data while preserving the 
most important information, thus facilitating efficient fusion. The neural network-based 
approaches can be employed for data fusion in CSDFGD, where deep learning models are 
trained to learn the complex relationships between color spaces and automatically generate 
fused representations optimized for specific design objectives. These models can adaptively 
adjust the fusion process based on input data and design requirements, offering flexibility and 
scalability in Kalman Filter fusion. By incorporating color information from multiple sources, 
such as product Videos in RGB color space, branding elements in CMYK color space, and 
background video in LAB color space. 

 

Figure 1: Process of Kalman Filtering in Video for the Multi-Object Tracking 

Initially, convert the color information from each source into a standardized color 
space, ensuring consistency and compatibility across the design stated in Figure 1. Let's 
denote the color values from the RGB, CMYK, and LAB color spaces as CRGB, CMYK, and 
𝐶𝐶𝐿𝐿𝐶𝐶𝐶𝐶, respectively. Assign weights to each Kalman Filter based on its importance or 



relevance to the design objective. For example, we may assign higher weights to the branding 
elements in CMYK Kalmann Filter to ensure consistency with the brand identity. Let's denote 
the weights for each Kalmann Filter as wRGB, wCMYK, and wLAB. The weighted 
averaging algorithm to fuse the color information from different color spaces defined in 
equation (5) 

𝐶𝐶𝑓𝑓 = 𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶 × 𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶 + 𝑤𝑤𝐶𝐶𝑤𝑤𝑌𝑌𝑤𝑤 × 𝐶𝐶𝐶𝐶𝑤𝑤𝑌𝑌𝑤𝑤 + 𝑤𝑤𝐿𝐿𝐶𝐶𝐶𝐶× 𝐶𝐶𝐿𝐿𝐶𝐶𝐶𝐶           (5) 
 

In equation (5) fused color 𝐶𝐶𝑓𝑓 represents a unified color representation that maximizes 
visual impact and communicative effectiveness while maintaining consistency with the 
design objectives. Kalman Filter Data Fusion Multi-Target Tracking (CSDFGD) applies 
digital Video processing techniques to combine data from multiple color spaces, transforming 
visual information into unique and enhanced graphic outputs. This approach can be especially 
powerful in visual space transformation, which leverages Kalmann Filterfusion for dynamic 
and visually appealing results.  Each Kalmann Filter(e.g., RGB, HSV, YUV) offers distinct 
properties: 

• RGB (Red, Green, Blue): Common in digital screens, where each color is an additive 
combination. 

• HSV (Hue, Saturation, Value): More intuitive for human interpretation of colors. 

• YUV/YCbCr: Common in video compression, separating brightness from color data 
stated in equation (6) 

𝑌𝑌 = 0.299𝑤𝑤 + 0.587𝑤𝑤 + 0.114𝐶𝐶                                              (6) 

By combining information from different color spaces, data fusion creates visual depth and 
enhances color detail. Weighted Fusion balance contributions from each Kalman Filter 
represented in equation (7) 

𝐶𝐶𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑤𝑤1 ⋅ 𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶 + 𝑤𝑤2 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑤𝑤3 ⋅ 𝐶𝐶𝑌𝑌𝐶𝐶𝐶𝐶                            (7) 

In equation (7) 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3 are weights assigned to each color space. After fusion, the data is 
transformed back into a unified visual space denoted in equation (8) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑓𝑓 = 𝑇𝑇𝐶𝐶𝑎𝑎𝑌𝑌𝐶𝐶𝑓𝑓𝐶𝐶𝐶𝐶𝑇𝑇(𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,𝐶𝐶𝐶𝐶𝑌𝑌𝑡𝑡𝐶𝐶𝑎𝑎𝐶𝐶𝑡𝑡𝑓𝑓𝑛𝑛ℎ𝑓𝑓𝑛𝑛𝑎𝑎𝑓𝑓𝑓𝑓,𝐸𝐸𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝑓𝑓𝑒𝑒𝑒𝑒ℎ𝑓𝑓𝑓𝑓𝑖𝑖𝑎𝑎𝑓𝑓𝑓𝑓)                (8) 

 

This step blends the fused channels into a cohesive visual form, applying contrast and edge 
adjustments to reinforce the Multi-Target Tracking’s aesthetic. 

4. CSDFGD for Visual Space Transformation 

Kalmann Filter Data Fusion Multi-Target Tracking (CSDFGD) for Visual Space 
Transformation integrates advanced Kalmann Filter manipulation and data fusion techniques 
to dynamically transform visual spaces within a Multi-Target Tracking. Visual space 
transformation in CSDFGD begins with the identification of key visual elements and their 
respective color spaces. Let's consider the primary color spaces: RGB, CMYK, and LAB. 
Each Kalmann Filter provides unique attributes that can be utilized to manipulate visual 
space effectively. Kalmann Filter Conversion is the initial step involves converting colors 



from their original spaces to a common intermediate space, often LAB due to its perceptual 
uniformity. Kalmann Filter Data Fusion Multi-Target Tracking (CSDFGD) can significantly 
enhance Visual Space Transformation (VST) by providing a robust framework for integrating 
diverse color information and manipulating spatial elements in Multi-Target Tracking. Visual 
Space Transformation involves altering the perception of space within an Video, such as its 
dimensions, perspective, and depth, to achieve specific aesthetic or communicative goals. 
CSDFGD leverages Kalmann Filterdata fusion to optimize these transformations, ensuring 
that the resulting designs are both visually appealing and coherent. The CSDFGD for wushu 
competition starts with the representation of color and spatial information in multiple color 
spaces. Suppose we have an Video represented in RGB, CMYK, and LAB color spaces. Let 
𝐼𝐼𝑤𝑤𝑤𝑤𝐶𝐶(𝑥𝑥, 𝑦𝑦), 𝐼𝐼𝐶𝐶𝑤𝑤𝑌𝑌𝑤𝑤(𝑥𝑥,𝑦𝑦), 𝑎𝑎𝑌𝑌𝐶𝐶 𝐼𝐼𝐿𝐿𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) denote the intensity values of the Video at pixel 
coordinates (𝑥𝑥,𝑦𝑦) in each color space. To integrate this color information, we first convert 
each Kalmann Filterrepresentation into a common framework. This can be achieved through 
Kalmann Filterconversion equations. For example, the conversion from RGB to LAB 
Kalmann Filterinvolves the following steps: Convert RGB to XYZ Kalmann Filteras in 
equation (9) – equation (11)  

 𝑋𝑋 = 0.4124564𝑤𝑤 + 0.3575761𝑤𝑤 + 0.1804375𝐶𝐶                                   (9) 

𝑌𝑌 = 0.2126729𝑤𝑤 + 0.7151522𝑤𝑤 + 0.0721750𝐶𝐶                                  (10) 

 𝑍𝑍 = 0.0193339𝑤𝑤 + 0.1191920𝑤𝑤 + 0.9503041𝐶𝐶                                   (11) 

Convert XYZ to LAB Kalmann Filter as in equation (12) – equation (14) 

𝐿𝐿 = 116 × 𝑓𝑓(𝑌𝑌/𝑌𝑌𝑌𝑌) − 16                                                (12) 

 𝑎𝑎 = 500 × (𝑓𝑓(𝑋𝑋/𝑋𝑋𝑌𝑌) − 𝑓𝑓(𝑌𝑌/𝑌𝑌𝑌𝑌))                                        (13) 

𝑏𝑏 = 200 × (𝑓𝑓(𝑌𝑌/𝑌𝑌𝑌𝑌) − 𝑓𝑓(𝑍𝑍/𝑍𝑍𝑌𝑌))                                        (14) 

In equation (12) – equation (14) 𝑓𝑓(𝑡𝑡) is defined as this algorithm integrates color information 
from multiple color spaces and applies visual space transformation to achieve the desired 
visual effects in Multi-Target Tracking. 

Step 1: Kalmann FilterConversion - Convert the Video from RGB, CMYK, and LAB color 
spaces to a common Kalmann Filter(e.g., LAB). 

Step 2: Data Fusion - Fuse the color information from different color spaces using weighted 
averaging. 

Step 3: Visual Space Transformation - Apply spatial transformations (e.g., scaling, rotation, 
skewing, and perspective transformation) to the fused Video. 

 



 

(a)                                                                 (b)                                    (c) 

Figure 2: Wushu Competition Multi-target Tracking (a) Frame 1(b) Frame 2 (c) Frame 3 

The figure 2(a) -Figure 2(c) presented the multi-traget tracking model for the different frame 
sequences.  

Algorithm 1: Kalmann Filter Data Fusion Multi-Target Tracking (CSDFGD)  

# Step 1: Kalmann FilterConversion 

function convert_to_LAB(Video_RGB, Video_CMYK): 

    # Convert RGB to XYZ 

    Video_XYZ_from_RGB = RGB_to_XYZ(Video_RGB) 

    # Convert CMYK to RGB and then to XYZ 

    Video_RGB_from_CMYK = CMYK_to_RGB(Video_CMYK) 

    Video_XYZ_from_CMYK = RGB_to_XYZ(Video_RGB_from_CMYK) 

    # Convert XYZ to LAB 

    Video_LAB_from_RGB = XYZ_to_LAB(Video_XYZ_from_RGB) 

    Video_LAB_from_CMYK = XYZ_to_LAB(Video_XYZ_from_CMYK)     

    return Video_LAB_from_RGB, Video_LAB_from_CMYK 

# Step 2: Data Fusion 

function fuse_color_spaces(Video_LAB_from_RGB, Video_LAB_from_CMYK, 
Video_LAB_original, weights): 

    w_RGB, w_CMYK, w_LAB = weights 

    fused_Video = w_RGB * Video_LAB_from_RGB + w_CMYK * 
Video_LAB_from_CMYK + w_LAB * Video_LAB_original 

    return fused_Video 

# Step 3: Visual Space Transformation 

function apply_visual_space_transformation(fused_Video, transformation_matrix): 



    transformed_Video = apply_transformation(fused_Video, transformation_matrix) 

    return transformed_Video 

# Helper Functions 

function RGB_to_XYZ(Video_RGB): 

    # Conversion formula from RGB to XYZ 

    # This is a placeholder; implement according to the standard conversion equations 

    pass 

function CMYK_to_RGB(Video_CMYK): 

    # Conversion formula from CMYK to RGB 

    # This is a placeholder; implement according to the standard conversion equations 

    pass 

function XYZ_to_LAB(Video_XYZ): 

    # Conversion formula from XYZ to LAB 

    # This is a placeholder; implement according to the standard conversion equations 

    pass 

function apply_transformation(Video, matrix): 

    # Apply spatial transformation using the given matrix 

    # This is a placeholder; implement according to the specific transformation requirements 

    pass 

# Main Function 

function CSDFGD_VST(Video_RGB, Video_CMYK, Video_LAB_original, weights, 
transformation_matrix): 

    # Step 1: Kalmann FilterConversion 

    Video_LAB_from_RGB, Video_LAB_from_CMYK = convert_to_LAB(Video_RGB, 
Video_CMYK)    

# Step 2: Data Fusion 

    fused_Video = fuse_color_spaces(Video_LAB_from_RGB, Video_LAB_from_CMYK, 
Video_LAB_original, weights) 

    # Step 3: Visual Space Transformation 

    transformed_Video = apply_visual_space_transformation(fused_Video, 
transformation_matrix) 



       return transformed_Video 

To blend information from different color spaces, we start by converting between them are 
computed using equations (15) – equation (17) 

𝑌𝑌 = 0.299𝑤𝑤 + 0.587𝑤𝑤 + 0.114𝐶𝐶                                                   (15) 

𝐶𝐶 = 0.492(𝐶𝐶 − 𝑌𝑌)                                                                   (16) 

𝐶𝐶 = 0.877(𝑤𝑤 − 𝑌𝑌)                                                              (17) 

This transformation isolates luminance (Y), making it easier to adjust contrast separately 
from color are as denoted in equation (18) – equation (20) 

𝐶𝐶 = 𝑎𝑎𝑌𝑌𝐸𝐸𝐶𝐶𝐶𝐶 �√3(𝐺𝐺−𝐵𝐵)
2𝑅𝑅−𝐺𝐺−𝐵𝐵

�                                                    (18) 

𝐶𝐶 =   𝑒𝑒𝑓𝑓𝑚𝑚(𝑅𝑅,𝐺𝐺,𝐵𝐵)−𝑒𝑒𝑖𝑖𝑛𝑛(𝑅𝑅,𝐺𝐺,𝐵𝐵)
𝑒𝑒𝑓𝑓𝑚𝑚(𝑅𝑅,𝐺𝐺,𝐵𝐵)

                                                  (19) 

𝐶𝐶 = 𝑇𝑇𝑎𝑎𝑥𝑥(𝑤𝑤,𝑤𝑤,𝐶𝐶)                                                          (20) 

Kalmann Filter Data Fusion Multi-Target Tracking (CSDFGD) is a method that leverages the 
unique characteristics of multiple color spaces, such as RGB, HSV, and YUV, to achieve a 
visually enriched transformation in Multi-Target Tracking. By fusing data from these color 
spaces, designers can control different aspects of the visual representation independently, 
such as luminance, hue, and saturation—enhancing the overall aesthetic quality of an Video. 
The RGB Kalmann Filteris useful for additive color blending, HSV aligns closely with 
human color perception, and YUV separates brightness from color, allowing for contrast 
adjustments without altering color integrity. In CSDFGD, a weighted fusion model combines 
these color spaces, creating a composite output where each Kalman Filter contributes 
selectively to the final design. Mathematically, this can be represented by a fusion equation, 
where weights assigned to RGB, HSV, and YUV channels define their influence on the result. 
This fusion enables unique color enhancements by leveraging RGB’s color mix, HSV’s tone 
control, and YUV’s luminance flexibility. Further, digital Video processing techniques like 
edge detection and contrast enhancement refine the composition by adding depth and texture. 
For edge detection, the Sobel operator highlights structural details, calculating gradient 
magnitudes across the Video for sharper delineation of features. Contrast enhancement, 
applied to the Y (luminance) channel, intensifies brightness and depth, further enhancing 
visual appeal. The final output is achieved by recomposing the fused and processed elements 
into a cohesive Video. This transformation equation integrates the fused color data, enhanced 
contrast, and edge details, resulting in a unified, vibrant visual with enhanced clarity and 
dimensionality. Through CSDFGD, designers gain control over complex visual attributes, 
creating compelling graphics that combine rich color dynamics, contrast depth, and refined 
textures. 

5. Simulation Results  

The simulation results of applying Kalmann Filter Data Fusion Multi-Target Tracking 
(CSDFGD) for Visual Space Transformation (VST) demonstrate the effectiveness and 
versatility of this approach in enhancing Multi-Target Tracking. The simulations were 
conducted using a set of sample Videos that included product photos, branding elements, and 



background scenes, each represented in RGB, CMYK, and LAB color spaces. Initially, the 
Videos were converted to a common Kalmann Filter(LAB) using standard Kalmann Filter 
conversion equations. The weighted averaging method was then applied to fuse the color 
data, with weights optimized based on the design objectives. For instance, higher weights 
were assigned to branding elements in the CMYK space to ensure brand consistency, while 
product Videos and backgrounds were balanced with appropriate weights. 

Table 1: Kalmann Filter Estimation with Visual Space Transformation 

Metric Before CSDFGD After CSDFGD 

Visual Appeal Moderate High 

Color Richness Limited to individual color 
spaces 

Enhanced by combining color 
spaces 

Vibrancy Average High 

Coherence Inconsistent Seamless 

Color Transitions Noticeable differences Smooth transitions 

Color Schemes Potential mismatches Harmonized schemes 

Spatial Accuracy Basic Precise 

Scaling Limited precision High precision 

Rotation Possible distortions Minimal distortions 

Perspective Changes May appear unnatural Natural appearance 

Computational 
Efficiency 

Average High 

Processing Time Longer due to individual 
processing 

Reduced due to optimized fusion 

Real-Time Application Challenging Feasible 

 

In Table 1, demonstrate the significant enhancements achieved through the application 
of Kalmann FilterData Fusion Multi-Target Tracking (CSDFGD) for Visual Space 
Transformation (VST). Before implementing CSDFGD, the visual appeal of designs was 
moderate, constrained by the limitations of individual color spaces. This resulted in average 
vibrancy and only moderate color richness. Inconsistencies in color transitions and potential 
mismatches in color schemes further compromised the coherence of the designs. Spatial 
accuracy was basic, with limited precision in scaling, potential distortions during rotation, 
and perspective changes that often appeared unnatural. Additionally, computational efficiency 
was average, with longer processing times due to the separate handling of each color space, 
making real-time application challenging. After applying CSDFGD, there was a marked 
improvement in all metrics. The visual appeal significantly increased, with enhanced color 
richness achieved by combining multiple color spaces, resulting in highly vibrant and 



visually attractive designs. The coherence improved dramatically, with smooth color 
transitions and harmonized color schemes creating a seamless visual experience. Spatial 
accuracy was also greatly enhanced, with high precision in scaling, minimal distortions in 
rotation, and natural appearances in perspective transformations. Computational efficiency 
saw notable advancements, with optimized fusion processes reducing processing times and 
making real-time application feasible presented in Figure 3. 

 

 

Figure 3: Multi-Traget Tracking with Wushu Competition 

Table 2: Kalmann FilterEstimation Score with Visual Space Transformation 

Metric Before CSDFGD After CSDFGD 

Visual Appeal 
  

Color Richness 6 9 

Vibrancy 5 8 

Coherence 
  

Color Transitions 4 9 

Color Schemes 5 8 

Spatial Accuracy 
  

Scaling Precision 6 9 

Rotation Accuracy 5 8 

Perspective Naturalness 4 9 

Computational Efficiency 
  

Processing Time (s) 10 4 

Real-Time Feasibility 3 8 



 

 

Figure 4: Data Fusion with Wushu Competition 

In Figrue 4 and  Table 2 provides a comprehensive evaluation of the impact of 
Kalmann FilterData Fusion Multi-Target Tracking (CSDFGD) on Visual Space 
Transformation (VST), highlighting significant improvements across various metrics. Before 
the implementation of CSDFGD, the designs exhibited moderate visual appeal, with limited 
color richness and vibrancy. Coherence was also compromised, evidenced by noticeable 
differences in color transitions and potential mismatches in color schemes. Spatial accuracy 
was basic, with limited precision in scaling and rotation, and perspective changes that 
appeared unnatural. Additionally, computational efficiency was notably low, with longer 
processing times and limited feasibility for real-time applications. However, after applying 
CSDFGD, substantial enhancements were observed in all areas. The visual appeal 
significantly increased, with a notable boost in color richness and vibrancy, leading to more 
visually compelling designs. Coherence improved remarkably, characterized by smooth color 
transitions and harmonized color schemes. Spatial accuracy saw notable improvements, with 
higher precision in scaling, rotation, and more natural perspective transformations. 
Furthermore, computational efficiency was greatly enhanced, with significantly reduced 
processing times and improved feasibility for real-time applications. 

Table 3: Kalmann Filter  Fusion 

Transformation Method RGB Weight (w₁) HSV Weight (w₂) YUV Weight (w₃) 

Standard RGB Fusion 1.0 0.0 0.0 

Balanced Fusion 0.4 0.3 0.3 

Hue-Dominant Fusion 0.2 0.7 0.1 

High Luminance Fusion 0.2 0.2 0.6 

Texture Emphasis 0.3 0.3 0.4 



Contrast-Enhanced 0.1 0.4 0.5 

Saturated Color Fusion 0.5 0.5 0.0 

  

Table 4: Enhancement with CSDFGD 

Transformation 
Method 

Edge Enhancement Intensity 
(0-10) 

Contrast Enhancement Level 
(0-100) 

Basic RGB 0 20 

Balanced Fusion 5 50 

Hue-Enhanced Fusion 8 70 

High Luminance 3 80 

Edge-Textured Fusion 9 60 

Contrast-Dominant 7 90 

Saturated Fusion 2 40 

 

Figure 5: Data Fusion with Kalmann Filter  



 

Figure 6: Video Sequence Enhancement in Wushu Competition   

In Table 3 and Figure 5 displays the Kalmann FilterFusion parameters for each 
method, where the RGB, HSV, and YUV weights indicate the relative contribution of each 
Kalmann Filterin the final composition. As in Figure 6 In the "Standard RGB Fusion," only 
the RGB Kalmann Filter is used (weight 1.0), creating a basic design with no influence from 
HSV or YUV. The "Balanced Fusion" method evenly integrates RGB (0.4), HSV (0.3), and 
YUV (0.3), resulting in a harmonious mix of color richness, tone control, and luminance. 
"Hue-Dominant Fusion" (with an HSV weight of 0.7) emphasizes vivid color tones, while 
"High Luminance Fusion" (high YUV weight at 0.6) provides brighter and clearer designs by 
enhancing the luminance channel. "Texture Emphasis" and "Contrast-Enhanced" 
configurations further increase YUV influence, balancing texture and contrast. Lastly, 
"Saturated Color Fusion" combines RGB and HSV equally (both at 0.5) for rich, vibrant 
colors without YUV's luminance contribution. Table 4 details the Enhancement Settings 
applied to each method, using Edge Enhancement Intensity and Contrast Enhancement Level. 
"Basic RGB" has minimal enhancement, with no edge enhancement and a low contrast level 
(20). "Balanced Fusion" applies moderate edge enhancement (5) and contrast (50), creating a 
middle-ground transformation with enhanced clarity. "Hue-Enhanced Fusion" and "High 
Luminance" use higher levels of contrast (70 and 80, respectively), with the former focusing 
on bold color tones and the latter on brightness. "Edge-Textured Fusion" maximizes edge 
enhancement (9) with mid-level contrast (60) to highlight texture. "Contrast-Dominant" uses 
strong contrast (90) and notable edge intensity (7), resulting in a high-impact visual. Lastly, 
"Saturated Fusion" has moderate saturation (40) with minimal edge enhancement (2), 
creating a smooth, colorful look with less emphasis on texture. 

Table 5: CSDFGD for Multi-Target Tracking 

 

Video 
Type 

Fusion 
Method 

RGB 
Weigh
t (w₁) 

HSV 
Weigh
t (w₂) 

YUV 
Weigh
t (w₃) 

Saturation 
Adjustme
nt (0-100) 

Brightness 
Adjustme
nt (0-100) 

Sharpness 
Enhanceme
nt (0-100) 

Visual 
Effect 
Summary 



Portrait 
(Natural
) 

Light 
Fusion 

0.6 0.3 0.1 40 30 20 Soft, 
natural 
tones with 
subtle 
contrast 
and clarity 

Cityscap
e 
(Vibrant
) 

High 
Contrast 
Fusion 

0.2 0.7 0.1 85 80 90 Bold and 
vibrant 
with high 
contrast 
and 
sharpness 

Abstract 
Art 

Color-
Intense 
Fusion 

0.7 0.2 0.1 90 70 60 Intense 
colors with 
vibrant 
saturation 
and sharp 
edges 

Black & 
White 

Monochrom
e Fusion 

0.0 0.0 1.0 0 90 30 High 
contrast 
with no 
color, 
sharp 
black-and-
white 
tones 

Nature 
(Bright) 

High 
Brightness 
Fusion 

0.3 0.3 0.4 50 90 20 Bright, 
clear 
visuals 
with soft 
detail, 
ideal for 
daylight 

Vintage 
Style 

Warm Tone 
Fusion 

0.5 0.3 0.2 30 60 80 Warm 
tones with 
slight 
desaturatio
n and 
enhanced 
sharpness 

Night 
Scene 

Low 
Saturation 
Fusion 

0.4 0.4 0.2 20 80 85 Muted 
colors with 
strong 
contrast 
and sharp 
edges for 
nighttime 

  



 

Figure 7: Multi-Target Tracking with Wushu Competition 

The Table 5 and Figure 7 showcases various Kalmann FilterData Fusion Multi-Target 
Tracking (CSDFGD) methods applied to different Video types, highlighting how fusion 
settings and enhancement parameters can produce distinct visual effects in Multi-Target 
Tracking. The table includes a diverse range of Videos, from portraits and cityscapes to 
abstract art and black-and-white designs, each utilizing different combinations of RGB, HSV, 
and YUV Kalmann Filterweights, as well as saturation, brightness, and sharpness 
adjustments. For the Portrait (Natural) Video, the "Light Fusion" method uses a higher weight 
on RGB (0.6), creating soft, natural tones with subtle contrast and clarity, perfect for portraits 
with minimal sharpness. In contrast, the Cityscape (Vibrant) design employs the "High 
Contrast Fusion" method, with a higher HSV weight (0.7) and significant enhancements in 
saturation, brightness, and sharpness (85, 80, and 90, respectively), producing bold, vibrant 
visuals with high contrast and sharp details, ideal for urban scenes. The Abstract Art Video 
focuses on a "Color-Intense Fusion," where RGB (0.7) is dominant, resulting in intense 
colors with vibrant saturation (90) and sharp edges (60). For a Black & White design, the 
"Monochrome Fusion" method uses an exclusive YUV weight (1.0), creating high contrast 
without color, while the sharpness enhancement (30) retains the black-and-white tones, 
making it suitable for monochromatic graphics. For natural Nature (Bright) visuals, the "High 
Brightness Fusion" method balances RGB, HSV, and YUV weights to create bright and clear 
Videory, with soft detail and high brightness (90), ideal for daylight scenes. The Vintage Style 
design uses a "Warm Tone Fusion" with moderate saturation and a high sharpness 
enhancement (80), creating warm, slightly desaturated tones, perfect for nostalgic or retro 
visuals. Lastly, for a Night Scene, the "Low Saturation Fusion" method produces muted 



colors with strong contrast (80) and sharp edges (85), creating a high-contrast nighttime 
effect, perfect for dark, atmospheric scenes. 

6. Conclusion 

This paper highlights the transformative potential of Kalman Filter Data Fusion Multi-
Target Tracking (CSDFGD) for Visual Space Transformation (VST) in Multi-Target 
Tracking. Through a comprehensive analysis of the before and after effects of CSDFGD 
implementation, it is evident that this approach leads to significant enhancements across 
various critical metrics. From improving visual appeal and coherence to enhancing spatial 
accuracy and computational efficiency, CSDFGD proves to be a powerful tool for modern 
Multi-Target Trackingers. By seamlessly integrating color information from multiple color 
spaces and applying sophisticated spatial transformations, CSDFGD enables designers to 
create more vibrant, coherent, and visually compelling designs. Moreover, the improved 
computational efficiency and feasibility for real-time applications underscore the practical 
value of CSDFGD in meeting the evolving demands of the design industry. 
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