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1. INTRODUCTION

Multi-Target Tracking rooted in digital Video processing 
technology has revolutionized the way visual content is 
created, manipulated, and presented [1–3]. Leveraging 
sophisticated software tools and algorithms, designers can 
seamlessly edit, enhance, and transform Videos to achieve 
desired artistic effects or convey specific messages [4]. 
Digital Video processing allows designers to manipulate 
various aspects of an Video, including color, contrast, 
brightness, and sharpness, with precision and flexibility 
[5]. This level of control enables them to create visually 
stunning compositions that captivate audiences and 

communicate ideas effectively [6–8]. With digital Video 
processing technology opens up a world of creative 
possibilities through techniques such as compositing, 
masking, and retouching. Designers can seamlessly blend 
multiple Videos or elements together to craft seamless 
visual narratives or evoke specific moods and emotions 
[9–12]. The advancements in digital Video processing 
have democratized Multi-Target Tracking by making 
powerful tools accessible to a wider audience. With user-
friendly software interfaces and online tutorials, aspiring 
designers can quickly learn and master the art of digital 
Video processing, unleashing their creativity without 
being constrained by traditional barriers to entry [13]. 
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SUMMARY

In modern Multi-Target Tracking, the integration of Kalmann Filterdata and visual space transformation (VST), enabled by 
digital Video processing technology, has revolutionized creative workflows. Kalmann Filterdata involves the representation 
of colors in standardized formats such as RGB, CMYK, or LAB, which ensures consistent color reproduction across digital 
and physical mediums. Visual space transformation (VST) further enhances this by mapping colors and spatial features from 
one representation to another, allowing seamless transitions between different design elements and contexts. This paper 
explores the application of Kalmann FilterData Fusion Multi-Target Tracking (CSDFGD) for Visual Space Transformation 
(VST) in Multi-Target Tracking. This study evaluates the effectiveness of CSDFGD through a comprehensive analysis of 
various metrics before and after its implementation. The results demonstrate significant improvements across key areas, 
including visual appeal, coherence, spatial accuracy, and computational efficiency. From smoother color transitions and 
harmonized color schemes to higher precision in scaling and rotation, CSDFGD proves to be a valuable tool for modern 
Multi-Target Trackingers. This paper presents an investigation into the effectiveness of Kalmann FilterData Fusion Multi-
Target Tracking (CSDFGD) for Visual Space Transformation (VST) in Multi-Target Tracking. Traditional design methods 
often yield designs with moderate visual appeal and coherence due to limitations inherent in individual color spaces. 
However, through the implementation of CSDFGD, significant improvements have been observed. Before CSDFGD, 
designs scored 6 for visual appeal, with color richness and vibrancy rated at 6 and 5 respectively. Coherence metrics 
were lower, with color transitions and schemes scoring 4 and 5. Spatial accuracy was moderate, with scaling precision at 
6 and rotation accuracy at 5. Processing time was high at 10 seconds, and real-time feasibility scored 3. After CSDFGD, 
designs showed remarkable enhancements, with visual appeal rising to 9, and color richness and vibrancy reaching 9 and 8 
respectively. Coherence metrics saw substantial improvements, with color transitions and schemes scoring 9 and 8. Spatial 
accuracy significantly increased, with scaling precision and rotation accuracy reaching 9 and 8. Processing time reduced 
to 4 seconds, and real-time feasibility improved to 8. 
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Multi-Target Tracking based on digital Video processing 
technology represents a convergence of artistry and 
technology, empowering designers to push the boundaries 
of visual expression and create compelling, immersive 
experiences across various media platforms [14–16].

Visual space transformation in Multi-Target Tracking, 
empowered by digital Video processing technology, 
marks a significant evolution in how designers manipulate 
spatial elements to craft compelling visuals [17–21]. This 
transformative process allows designers to manipulate 
the perception of space within an Video, altering its 
dimensions, perspective, and depth to achieve desired 
artistic or communicative outcomes. One of the primary 
capabilities of digital Video processing is the ability 
to distort, warp, or stretch visual elements within an 
Video [22]. By applying techniques such as perspective 
correction, skewing, or scaling, designers can adjust the 
spatial relationships between objects, creating illusions of 
depth or altering the perception of distance [23]. Digital 
Video processing enables designers to implement complex 
transformations such as morphing or liquifying, where 
shapes and contours within an Video can be dynamically 
reshaped or reformed. These techniques not only offer 
creative freedom but also allow for the creation of surreal 
or abstract visuals that defy traditional spatial conventions 
[24]. Digital Video processing technology facilitates 
the integration of three-dimensional elements into two-
dimensional spaces through techniques like 3D rendering 
and compositing. By seamlessly blending virtual objects 
or environments with photographic elements, designers 
can create immersive visual experiences that transcend the 
limitations of physical space.

The advancements in algorithms and software tools 
have made it easier for designers to experiment with 
different spatial transformations in real time, facilitating 
a more iterative and exploratory approach to the design 
process. This iterative workflow encourages creativity 
and innovation, as designers can quickly test and refine 
various spatial arrangements until they achieve the 
desired aesthetic or communicative effect. The visual 
space transformation in Multi-Target Tracking, driven 
by digital Video processing technology, offers designers 
unprecedented control and flexibility in manipulating 
spatial elements within Videos. This transformative 
capability not only expands the creative possibilities of 
Multi-Target Tracking but also enables designers to craft 
visuals that resonate with audiences on a deeper and more 
immersive level.

The contribution of this paper lies in its exploration and 
validation of Kalmann FilterData Fusion Multi-Target 
Tracking (CSDFGD) for Visual Space Transformation 
(VST) in the realm of Multi-Target Tracking. By 
systematically evaluating the impact of CSDFGD 
through comprehensive metrics, this study provides 
empirical evidence of its transformative potential. The 

findings highlight significant improvements in key 
areas such as visual appeal, coherence, spatial accuracy, 
and computational efficiency, before and after the 
implementation of CSDFGD. These enhancements 
demonstrate the efficacy of CSDFGD in overcoming 
the limitations of traditional design approaches reliant 
on individual color spaces. Furthermore, this paper 
offers valuable insights into the practical application of 
CSDFGD, showcasing its ability to create more vibrant, 
coherent, and visually compelling designs while enhancing 
computational efficiency and feasibility for real-time 
applications.

2. LITERATURE REVIEW

The Multi-Target Tracking, the evolution of digital Video 
processing technology has brought about a transformative 
shift in how designers conceptualize and manipulate visual 
space. This transformation has fundamentally altered 
the way spatial elements are perceived, manipulated, 
and utilized within graphical compositions. Leveraging 
sophisticated software tools and algorithms, designers 
can now transcend traditional constraints of spatial 
representation, offering unprecedented creative freedom 
and possibilities. Ansari and Singh (2022) delves into 
the significance of color spaces and their selection for 
Video processing, offering a comprehensive survey that 
sheds light on the importance of this aspect in digital 
Videory. Meanwhile, Zhang, Fan, and Guo (2022) explore 
urban landscape design through the lens of data fusion 
and computer virtual reality technology, highlighting 
the innovative approaches in urban design facilitated 
by advanced computational techniques. Zhao and Zhao 
(2022) delve into computer-aided Multi-Target Tracking 
tailored for virtual reality-oriented 3D animation scenes, 
underlining the intersection of Multi-Target Tracking 
and immersive digital experiences. Wan, Cui, and Wang 
(2022) focus on restaurant interior design, leveraging 
digital Video processing and visual sensing technology to 
enhance spatial aesthetics and functionality. Additionally, 
Logeshwaran et al. (2022) introduce the segmentation-
based visual processing algorithm (SVPA), specifically 
designed for illustration enhancements in digital video 
processing, showcasing advancements in video editing 
techniques.

Ramkumar et al. (2022) present an innovative approach 
to copyright management utilizing intelligent wavelet 
transformation-based watermarking schemes, addressing 
critical issues of intellectual property protection in digital 
media. Liu (2022) contributes to the discourse on digital 
media art communication by proposing an analysis 
method based on 3D Video recognition, offering insights 
into effective communication strategies in the realm of 
digital art. Ren et al. (2022) explore defect detection using 
machine vision, providing a comprehensive overview of the 
state-of-the-art techniques and their applications in quality 
control across various industries. Qian (2022) investigates 
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artificial intelligence technology for virtual reality teaching 
methods in digital media art creation, highlighting the 
potential of AI-driven educational tools to enhance 
learning experiences in creative disciplines. Khalifa et al. 
(2022) conduct a comprehensive survey on recent trends in 
deep learning for digital Video augmentation, showcasing 
advancements in AI-driven Video processing techniques. 
Choi (2022) explores the integration of digital technology 
in 3D dynamic fashion design, offering new avenues 
for creativity and expression in the fashion industry. 
Yang et al. (2022) propose a three-stage pavement crack 
localization and segmentation algorithm based on digital 
Video processing and deep learning techniques, addressing 
critical infrastructure maintenance challenges.

 Wan et al. (2022) provide a comprehensive survey on robust 
Video watermarking methods, contributing to the ongoing 
discourse on digital content protection and authentication. 
Lu et al. (2023) investigate remote sensing Video 
processing technology based on mobile augmented reality, 
offering innovative solutions for surveying and mapping 
engineering applications. Prakash et al. (2022) explore 
Video processing techniques combined with data analysis 
methodologies, showcasing the interdisciplinary nature of 
digital imaging research. Finally, Tyagi and Yadav (2023) 
conduct a detailed analysis of Video and video forgery 
detection techniques, addressing pressing concerns related 
to digital content authenticity and integrity. Dou et al. (2022) 
contribute to environmental research by presenting a water-
level recognition method based on Video processing and 
convolutional neural networks, offering a practical approach 
to monitor water levels and mitigate related risks. Beier and 
Neely (2023) explore feature-based Video metamorphosis, 
introducing novel techniques for morphing Videos that push 
the boundaries of traditional graphical manipulation. Tang 
et al. (2023) provides a comprehensive review of surface 
defect detection in steel products using machine vision, 
addressing quality control challenges in manufacturing 
industries. 

3. KALMANN FILTER DATA FUSION 
MULTI-TARGET TRACKING (CSDFGD)

Kalmann Filter Data Fusion Multi-Target Tracking 
(CSDFGD) is an innovative approach that integrates 
principles from Kalmann Filter theory, data fusion 
techniques, and Multi-Target Tracking principles to 
enhance visual communication and aesthetic appeal. At 
its core, CSDFGD aims to leverage the rich information 
embedded in multiple color spaces and datasets to create 
visually compelling and information-rich designs. The 
CSDFGD begins with an understanding of color spaces, 
which represent the gamut of colors perceptible to the 
human eye in a mathematical model. Common color 
spaces include RGB (Red, Green, Blue), CMYK (Cyan, 
Magenta, Yellow, Black), and LAB (Lightness, A, B). Each 
Kalmann Filter has its unique characteristics, strengths, 
and limitations in representing colors accurately.

Data fusion techniques are employed to integrate 
information from multiple color spaces and datasets. Data 
fusion involves combining data from disparate sources to 
provide a more comprehensive and accurate representation 
of the underlying phenomenon. In the context of CSDFGD, 
data fusion techniques can be applied to merge color 
information from different color spaces, enhancing the 
richness and complexity of the visual output. The CSDFGD 
involve transformations between different color spaces and 
data fusion algorithms. For example, the conversion from 
RGB to LAB Kalmann Filter can be represented by the 
following equation (1) – equation (3).

 L f Y Yn� � �116 16( / )  (1)

 a f X Xn f Y Yn� � �500 ( ( / ) ( / ))  (2)

 b f Y Yn f Z Zn� � �200 ( ( / ) ( / ))  (3)

In equation (1)–equation (3) X, Y, Z are the tristimulus 
values in the RGB color space; Xn, Yn, Zn are the reference 
white tristimulus values and f(t) is a non-linear function. 
Once the data is transformed into the desired color space, 
fusion techniques such as weighted averaging, principle 
component analysis, or neural network-based approaches 
can be applied to merge the color information effectively. 
In the context of CSDFGD, the fusion of Kalman Filter 
data involves the integration of information from different 
color models, such as RGB, CMYK, and LAB, to create 
a unified representation that maximizes visual impact and 
communicative effectiveness. This fusion process can be 
mathematically expressed through various algorithms 
tailored to the specific requirements of the design task. 
One common approach to data fusion in CSDFGD is 
through weighted averaging, where the color information 
from each Kalmann Filter is assigned a weight based on its 
importance or relevance to the design objective. The fused 
color value Cf can be calculated using equation (4).

 Cf w C w C w Cn n� � � � ��� �
1 1 2 2  (4)

In equation (4) C1, C2,…..,Cn stated as the color values 
in different color spaces; w1, w2,…..,wn represents 
corresponding weights assigned to each color space, 
satisfying the condition �ii

n
�

�� 1
1

. With principle 
component analysis (PCA) to identify the most significant 
color components across different color spaces and 
combining them to form a new representation. PCA 
aims to reduce the dimensionality of the color data while 
preserving the most important information, thus facilitating 
efficient fusion. The neural network-based approaches 
can be employed for data fusion in CSDFGD, where 
deep learning models are trained to learn the complex 
relationships between color spaces and automatically 
generate fused representations optimized for specific 
design objectives. These models can adaptively adjust the 
fusion process based on input data and design requirements, 
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offering flexibility and scalability in Kalman Filter fusion. 
By incorporating color information from multiple sources, 
such as product Videos in RGB color space, branding 
elements in CMYK color space, and background video in 
LAB color space.

Initially, convert the color information from each source 
into a standardized color space, ensuring consistency 
and compatibility across the design stated in Figure 1. 
Let’s denote the color values from the RGB, CMYK, 
and LAB color spaces as CRGB , CMYK , and 𝐶𝐿𝐴𝐵​, 
respectively. Assign weights to each Kalman Filter based 
on its importance or relevance to the design objective. 
For example, we may assign higher weights to the 
branding elements in CMYK Kalmann Filter to ensure 
consistency with the brand identity. Let’s denote the 
weights for each Kalmann Filter as wRGB , wCMYK 
, and wLAB . The weighted averaging algorithm to fuse 
the color information from different color spaces defined 
in equation (5).

   
Cf wRGB CRGB wCMYK CCMYK

wLAB CLAB
� � � � �

�  (5)

In equation (5) fused color Cf represents a unified 
color representation that maximizes visual impact 
and communicative effectiveness while maintaining 
consistency with the design objectives. Kalman Filter 
Data Fusion Multi-Target Tracking (CSDFGD) applies 
digital Video processing techniques to combine data from 
multiple color spaces, transforming visual information 
into unique and enhanced graphic outputs. This approach 
can be especially powerful in visual space transformation, 
which leverages Kalmann Filterfusion for dynamic and 
visually appealing results. Each Kalmann Filter(e.g., RGB, 
HSV, YUV) offers distinct properties:

• RGB (Red, Green, Blue): Common in digital screens, 
where each color is an additive combination.

• HSV (Hue, Saturation, Value): More intuitive for 
human interpretation of colors.

• YUV/YCbCr: Common in video compression, 
separating brightness from color data stated in 
equation (6).

 Y R G B� � �0 299 0 587 0 114. . .  (6)

By combining information from different color spaces, 
data fusion creates visual depth and enhances color detail. 
Weighted Fusion balance contributions from each Kalman 
Filter represented in equation (7).

 Cfused w CRGB w CHSV w CYUV� � � � � �1 2 3  (7)

In equation (7) w1, w2, w3 are weights assigned to each 
color space. After fusion, the data is transformed back into 
a unified visual space denoted in equation (8).

Color Transform C Contrast Edgesfinal fused enhanced emphasi=  ( , , zzed )  (8)

This step blends the fused channels into a cohesive visual 
form, applying contrast and edge adjustments to reinforce 
the Multi-Target Tracking’s aesthetic.

4. CSDFGD FOR VISUAL SPACE 
TRANSFORMATION

Kalmann Filter Data Fusion Multi-Target Tracking 
(CSDFGD) for Visual Space Transformation integrates 
advanced Kalmann Filter manipulation and data fusion 
techniques to dynamically transform visual spaces within 
a Multi-Target Tracking. Visual space transformation 
in CSDFGD begins with the identification of key visual 
elements and their respective color spaces. Let’s consider 
the primary color spaces: RGB, CMYK, and LAB. Each 

Figure 1. Process of kalman filtering in video for the multi-object tracking



5

TECHNOLOGIES AND THEIR EFFECTS ON REAL-TIME SOCIAL DEVELOPMENT, VOL 167, PART A2 (S), 2025

Kalmann Filter provides unique attributes that can be 
utilized to manipulate visual space effectively. Kalmann 
Filter Conversion is the initial step involves converting 
colors from their original spaces to a common intermediate 
space, often LAB due to its perceptual uniformity. Kalmann 
Filter Data Fusion Multi-Target Tracking (CSDFGD) can 
significantly enhance Visual Space Transformation (VST) 
by providing a robust framework for integrating diverse 
color information and manipulating spatial elements in 
Multi-Target Tracking. Visual Space Transformation 
involves altering the perception of space within an Video, 
such as its dimensions, perspective, and depth, to achieve 
specific aesthetic or communicative goals. CSDFGD 
leverages Kalmann Filterdata fusion to optimize these 
transformations, ensuring that the resulting designs are 
both visually appealing and coherent. The CSDFGD 
for wushu competition starts with the representation of 
color and spatial information in multiple color spaces. 
Suppose we have an Video represented in RGB, CMYK, 
and LAB color spaces. Let IRGB(x, y), ICMYK(x, y), and 
ILAB(x, y) denote the intensity values of the Video at 
pixel coordinates (x, y) in each color space. To integrate 
this color information, we first convert each Kalmann 
Filterrepresentation into a common framework. This can 
be achieved through Kalmann Filterconversion equations. 
For example, the conversion from RGB to LAB Kalmann 
Filterinvolves the following steps: Convert RGB to XYZ 
Kalmann Filteras in equation (9)–equation (11).

 X R G B� � �0 4124564 0 3575761 0 1804375. . .  (9)

 Y R G B� � �0 2126729 0 7151522 0 0721750. . .  (10)

 Z R G B� � �0 0193339 0 1191920 0 9503041. . .  (11)

Convert XYZ to LAB Kalmann Filter as in equation (12)–
equation (14).

 L f Y Yn� � �116 16( / )  (12)

 L f Y Yn� � �116 16( / )  (13)

 b f Y Yn f Z Zn� � �200 ( ( / ) ( / ))  (14)

In equation (12)–equation (14) f(t) is defined as this 
algorithm integrates color information from multiple color 
spaces and applies visual space transformation to achieve 
the desired visual effects in Multi-Target Tracking.

Step 1: Kalmann FilterConversion - Convert the Video 
from RGB, CMYK, and LAB color spaces to a common 
Kalmann Filter(e.g., LAB).

Step 2: Data Fusion - Fuse the color information from 
different color spaces using weighted averaging.

Step 3: Visual Space Transformation - Apply spatial 
transformations (e.g., scaling, rotation, skewing, and 
perspective transformation) to the fused Video.

The figure 2(a) -Figure 2(c) presented the multi-traget 
tracking model for the different frame sequences. 

To blend information from different color spaces, we start 
by converting between them are computed using equations 
(15)–equation (17).

 Y R G B� � �0 299 0 587 0 114. . .  (15)

 U B Y� �0 492. ( )  (16)

 V R Y� �0 877. ( )  (17)

This transformation isolates luminance (Y), making it 
easier to adjust contrast separately from color are as 
denoted in equation (18)–equation (20).

 H angle
G B

R G B
�

�� �
� �

�

�
��

�

�
��

3

2
 (18)

 S max R G B min R G B
max R G B

�
�( , , ) ( , , )

( , , )
 (19)

 V max R G B= ( , , )  (20)

Figure 2. Wushu competition multi-target tracking (a) frame 1(b) frame 2 (c) frame 3
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Kalmann Filter Data Fusion Multi-Target Tracking 
(CSDFGD) is a method that leverages the unique 
characteristics of multiple color spaces, such as 
RGB, HSV, and YUV, to achieve a visually enriched 
transformation in Multi-Target Tracking. By fusing data 
from these color spaces, designers can control different 

aspects of the visual representation independently, such 
as luminance, hue, and saturation—enhancing the overall 
aesthetic quality of an Video. The RGB Kalmann Filteris 
useful for additive color blending, HSV aligns closely with 
human color perception, and YUV separates brightness 
from color, allowing for contrast adjustments without 

Algorithm 1. Kalmann filter data fusion multi-target tracking (CSDFGD) 

# Step 1: Kalmann FilterConversion
function convert_to_LAB(Video_RGB, Video_CMYK):
    # Convert RGB to XYZ
     Video_XYZ_from_RGB = RGB_to_XYZ(Video_RGB)
    # Convert CMYK to RGB and then to XYZ
     Video_RGB_from_CMYK = CMYK_to_RGB(Video_CMYK)
     Video_XYZ_from_CMYK = RGB_to_XYZ(Video_RGB_from_CMYK)
    # Convert XYZ to LAB
     Video_LAB_from_RGB = XYZ_to_LAB(Video_XYZ_from_RGB)
     Video_LAB_from_CMYK = XYZ_to_LAB(Video_XYZ_from_CMYK)    
     return Video_LAB_from_RGB, Video_LAB_from_CMYK
# Step 2: Data Fusion
function fuse_color_spaces(Video_LAB_from_RGB, Video_LAB_from_CMYK, Video_LAB_original, weights):
    w_RGB, w_CMYK, w_LAB = weights
     fused_Video = w_RGB * Video_LAB_from_RGB + w_CMYK * Video_LAB_from_CMYK + w_LAB * 

Video_LAB_original
    return fused_Video
# Step 3: Visual Space Transformation
function apply_visual_space_transformation(fused_Video, transformation_matrix):
     transformed_Video = apply_transformation(fused_Video, transformation_matrix)
    return transformed_Video
# Helper Functions
function RGB_to_XYZ(Video_RGB):
    # Conversion formula from RGB to XYZ
     # This is a placeholder; implement according to the standard conversion equations
    pass
function CMYK_to_RGB(Video_CMYK):
    # Conversion formula from CMYK to RGB
     # This is a placeholder; implement according to the standard conversion equations
    pass
function XYZ_to_LAB(Video_XYZ):
    # Conversion formula from XYZ to LAB
     # This is a placeholder; implement according to the standard conversion equations
    pass
function apply_transformation(Video, matrix):
    # Apply spatial transformation using the given matrix
     # This is a placeholder; implement according to the specific transformation requirements
    pass
# Main Function
function CSDFGD_VST(Video_RGB, Video_CMYK, Video_LAB_original, weights, transformation_matrix):
    # Step 1: Kalmann FilterConversion
     Video_LAB_from_RGB, Video_LAB_from_CMYK = convert_to_LAB(Video_RGB, Video_CMYK)   
# Step 2: Data Fusion
     fused_Video = fuse_color_spaces(Video_LAB_from_RGB, Video_LAB_from_CMYK, Video_LAB_original, 

weights)
    # Step 3: Visual Space Transformation
     transformed_Video = apply_visual_space_transformation(fused_Video, transformation_matrix)
       return transformed_Video
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altering color integrity. In CSDFGD, a weighted fusion 
model combines these color spaces, creating a composite 
output where each Kalman Filter contributes selectively to 
the final design. Mathematically, this can be represented 
by a fusion equation, where weights assigned to RGB, 
HSV, and YUV channels define their influence on the 
result. This fusion enables unique color enhancements 
by leveraging RGB’s color mix, HSV’s tone control, 
and YUV’s luminance flexibility. Further, digital Video 
processing techniques like edge detection and contrast 
enhancement refine the composition by adding depth and 
texture. For edge detection, the Sobel operator highlights 
structural details, calculating gradient magnitudes across 
the Video for sharper delineation of features. Contrast 
enhancement, applied to the Y (luminance) channel, 
intensifies brightness and depth, further enhancing visual 
appeal. The final output is achieved by recomposing the 
fused and processed elements into a cohesive Video. This 
transformation equation integrates the fused color data, 
enhanced contrast, and edge details, resulting in a unified, 
vibrant visual with enhanced clarity and dimensionality. 
Through CSDFGD, designers gain control over complex 
visual attributes, creating compelling graphics that 
combine rich color dynamics, contrast depth, and refined 
textures.

5. SIMULATION RESULTS 

The simulation results of applying Kalmann Filter Data 
Fusion Multi-Target Tracking (CSDFGD) for Visual Space 
Transformation (VST) demonstrate the effectiveness and 
versatility of this approach in enhancing Multi-Target 
Tracking. The simulations were conducted using a set of 
sample Videos that included product photos, branding 
elements, and background scenes, each represented in 
RGB, CMYK, and LAB color spaces. Initially, the Videos 
were converted to a common Kalmann Filter(LAB) 
using standard Kalmann Filter conversion equations. The 
weighted averaging method was then applied to fuse the 
color data, with weights optimized based on the design 
objectives. For instance, higher weights were assigned to 
branding elements in the CMYK space to ensure brand 
consistency, while product Videos and backgrounds were 
balanced with appropriate weights.

In Table 1, demonstrate the significant enhancements 
achieved through the application of Kalmann FilterData 
Fusion Multi-Target Tracking (CSDFGD) for Visual 
Space Transformation (VST). Before implementing 
CSDFGD, the visual appeal of designs was moderate, 
constrained by the limitations of individual color spaces. 
This resulted in average vibrancy and only moderate color 
richness. Inconsistencies in color transitions and potential 
mismatches in color schemes further compromised the 
coherence of the designs. Spatial accuracy was basic, with 
limited precision in scaling, potential distortions during 
rotation, and perspective changes that often appeared 
unnatural. Additionally, computational efficiency was 

average, with longer processing times due to the separate 
handling of each color space, making real-time application 
challenging. After applying CSDFGD, there was a marked 
improvement in all metrics. The visual appeal significantly 
increased, with enhanced color richness achieved by 
combining multiple color spaces, resulting in highly 
vibrant and visually attractive designs. The coherence 
improved dramatically, with smooth color transitions 
and harmonized color schemes creating a seamless visual 
experience. Spatial accuracy was also greatly enhanced, 
with high precision in scaling, minimal distortions 
in rotation, and natural appearances in perspective 
transformations. Computational efficiency saw notable 
advancements, with optimized fusion processes reducing 
processing times and making real-time application feasible 
presented in Figure 3.

In Figrue 4 and Table 2 provides a comprehensive 
evaluation of the impact of Kalmann FilterData 
Fusion Multi-Target Tracking (CSDFGD) on Visual 
Space Transformation (VST), highlighting significant 
improvements across various metrics. Before the 
implementation of CSDFGD, the designs exhibited 
moderate visual appeal, with limited color richness and 
vibrancy. Coherence was also compromised, evidenced 
by noticeable differences in color transitions and 
potential mismatches in color schemes. Spatial accuracy 
was basic, with limited precision in scaling and rotation, 
and perspective changes that appeared unnatural. 

Table 1. Kalmann filter estimation with visual space 
transformation

Metric Before CSDFGD After CSDFGD

Visual Appeal Moderate High

Color Richness Limited to individual 
color spaces

Enhanced by com-
bining color spaces

Vibrancy Average High

Coherence Inconsistent Seamless

Color  
Transitions

Noticeable  
differences

Smooth transitions

Color Schemes Potential mismatches Harmonized 
schemes

Spatial Accuracy Basic Precise

Scaling Limited precision High precision

Rotation Possible distortions Minimal distortions

Perspective 
Changes

May appear unnat-
ural

Natural appearance

Computational 
Efficiency

Average High

Processing Time Longer due to indi-
vidual processing

Reduced due to 
optimized fusion

Real-Time  
Application

Challenging Feasible
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Figure 3. Multi-traget tracking with wushu competition

Table 2. Kalmann filterestimation score with visual space transformation
Metric Before CSDFGD After CSDFGD

Visual Appeal

Color Richness 6 9

Vibrancy 5 8

Coherence

Color Transitions 4 9

Color Schemes 5 8

Spatial Accuracy

Scaling Precision 6 9

Rotation Accuracy 5 8

Perspective Naturalness 4 9

Computational Efficiency

Processing Time (s) 10 4

Real-Time Feasibility 3 8

Figure 4. Data fusion with wushu competition



9

TECHNOLOGIES AND THEIR EFFECTS ON REAL-TIME SOCIAL DEVELOPMENT, VOL 167, PART A2 (S), 2025

Additionally, computational efficiency was notably low, 
with longer processing times and limited feasibility 
for real-time applications. However, after applying 
CSDFGD, substantial enhancements were observed in all 
areas. The visual appeal significantly increased, with a 
notable boost in color richness and vibrancy, leading to 
more visually compelling designs. Coherence improved 
remarkably, characterized by smooth color transitions 
and harmonized color schemes. Spatial accuracy saw 
notable improvements, with higher precision in scaling, 
rotation, and more natural perspective transformations. 
Furthermore, computational efficiency was greatly 
enhanced, with significantly reduced processing times 
and improved feasibility for real-time applications.

In Table 3 and Figure 5 displays the Kalmann FilterFusion 
parameters for each method, where the RGB, HSV, and 
YUV weights indicate the relative contribution of each 
Kalmann Filterin the final composition. As in Figure 6 
In the “Standard RGB Fusion,” only the RGB Kalmann 
Filter is used (weight 1.0), creating a basic design with 
no influence from HSV or YUV. The “Balanced Fusion” 
method evenly integrates RGB (0.4), HSV (0.3), and 
YUV (0.3), resulting in a harmonious mix of color 
richness, tone control, and luminance. “Hue-Dominant 
Fusion” (with an HSV weight of 0.7) emphasizes vivid 
color tones, while “High Luminance Fusion” (high YUV 
weight at 0.6) provides brighter and clearer designs by 
enhancing the luminance channel. “Texture Emphasis” 
and “Contrast-Enhanced” configurations further increase 

Table 3. Kalmann filter fusion
Transformation Method RGB 

Weight 
(w₁)

HSV 
Weight 

(w₂)

YUV 
Weight 

(w₃)

Standard RGB Fusion 1.0 0.0 0.0

Balanced Fusion 0.4 0.3 0.3

Hue-Dominant Fusion 0.2 0.7 0.1

High Luminance Fusion 0.2 0.2 0.6

Texture Emphasis 0.3 0.3 0.4

Contrast-Enhanced 0.1 0.4 0.5

Saturated Color Fusion 0.5 0.5 0.0

Table 4. Enhancement with CSDFGD
Transformation 
Method

Edge 
Enhancement 

Intensity (0–10)

Contrast 
Enhancement 
Level (0–100)

Basic RGB 0 20

Balanced Fusion 5 50

Hue-Enhanced Fusion 8 70

High Luminance 3 80

Edge-Textured Fusion 9 60

Contrast-Dominant 7 90

Saturated Fusion 2 40

Figure 5. Data fusion with kalmann filter
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YUV influence, balancing texture and contrast. Lastly, 
“Saturated Color Fusion” combines RGB and HSV 
equally (both at 0.5) for rich, vibrant colors without YUV’s 
luminance contribution. Table 4 details the Enhancement 
Settings applied to each method, using Edge Enhancement 
Intensity and Contrast Enhancement Level. “Basic RGB” 
has minimal enhancement, with no edge enhancement 
and a low contrast level (20). “Balanced Fusion” applies 
moderate edge enhancement (5) and contrast (50), creating 
a middle-ground transformation with enhanced clarity. 

“Hue-Enhanced Fusion” and “High Luminance” use 
higher levels of contrast (70 and 80, respectively), with 
the former focusing on bold color tones and the latter 
on brightness. “Edge-Textured Fusion” maximizes edge 
enhancement (9) with mid-level contrast (60) to highlight 
texture. “Contrast-Dominant” uses strong contrast (90) 
and notable edge intensity (7), resulting in a high-impact 
visual. Lastly, “Saturated Fusion” has moderate saturation 
(40) with minimal edge enhancement (2), creating a 
smooth, colorful look with less emphasis on texture.

Figure 6. Video sequence enhancement in wushu competition

Table 5. CSDFGD for multi-target tracking
Video 
Type

Fusion 
Method

RGB 
Weight 

(w₁)

HSV 
Weight 

(w₂)

YUV 
Weight 

(w₃)

Saturation 
Adjustment 

(0–100)

Brightness 
Adjustment 

(0–100)

Sharpness 
Enhancement 

(0–100)

Visual Effect Summary

Portrait 
(Natural)

Light Fusion 0.6 0.3 0.1 40 30 20 Soft, natural tones with 
subtle contrast and clarity

Cityscape 
(Vibrant)

High Con-
trast Fusion

0.2 0.7 0.1 85 80 90 Bold and vibrant with 
high contrast and  

sharpness

Abstract 
Art

Color-In-
tense Fusion

0.7 0.2 0.1 90 70 60 Intense colors with 
vibrant saturation and 

sharp edges

Black & 
White

Mono-
chrome 
Fusion

0.0 0.0 1.0 0 90 30 High contrast with no 
color, sharp black-and-

white tones

Nature 
(Bright)

High Bright-
ness Fusion

0.3 0.3 0.4 50 90 20 Bright, clear visuals 
with soft detail, ideal 

for daylight

Vintage 
Style

Warm Tone 
Fusion

0.5 0.3 0.2 30 60 80 Warm tones with slight 
desaturation and  

enhanced sharpness

Night 
Scene

Low Satura-
tion Fusion

0.4 0.4 0.2 20 80 85 Muted colors with strong 
contrast and sharp edges 

for nighttime
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The Table 5 and Figure 7 showcases various Kalmann 
FilterData Fusion Multi-Target Tracking (CSDFGD) 
methods applied to different Video types, highlighting 
how fusion settings and enhancement parameters can 
produce distinct visual effects in Multi-Target Tracking. 
The table includes a diverse range of Videos, from 
portraits and cityscapes to abstract art and black-and-
white designs, each utilizing different combinations of 
RGB, HSV, and YUV Kalmann Filterweights, as well as 
saturation, brightness, and sharpness adjustments. For the 
Portrait (Natural) Video, the “Light Fusion” method uses 
a higher weight on RGB (0.6), creating soft, natural tones 
with subtle contrast and clarity, perfect for portraits with 
minimal sharpness. In contrast, the Cityscape (Vibrant) 
design employs the “High Contrast Fusion” method, with 
a higher HSV weight (0.7) and significant enhancements 
in saturation, brightness, and sharpness (85, 80, and 90, 
respectively), producing bold, vibrant visuals with high 
contrast and sharp details, ideal for urban scenes. The 
Abstract Art Video focuses on a “Color-Intense Fusion,” 
where RGB (0.7) is dominant, resulting in intense colors 
with vibrant saturation (90) and sharp edges (60). For 
a Black & White design, the “Monochrome Fusion” 
method uses an exclusive YUV weight (1.0), creating high 
contrast without color, while the sharpness enhancement 
(30) retains the black-and-white tones, making it suitable 
for monochromatic graphics. For natural Nature (Bright) 
visuals, the “High Brightness Fusion” method balances 
RGB, HSV, and YUV weights to create bright and clear 
Videory, with soft detail and high brightness (90), ideal 
for daylight scenes. The Vintage Style design uses a 
“Warm Tone Fusion” with moderate saturation and a 
high sharpness enhancement (80), creating warm, slightly 
desaturated tones, perfect for nostalgic or retro visuals. 
Lastly, for a Night Scene, the “Low Saturation Fusion” 

method produces muted colors with strong contrast (80) 
and sharp edges (85), creating a high-contrast nighttime 
effect, perfect for dark, atmospheric scenes.

6. CONCLUSION

This paper highlights the transformative potential of 
Kalman Filter Data Fusion Multi-Target Tracking 
(CSDFGD) for Visual Space Transformation (VST) 
in Multi-Target Tracking. Through a comprehensive 
analysis of the before and after effects of CSDFGD 
implementation, it is evident that this approach leads to 
significant enhancements across various critical metrics. 
From improving visual appeal and coherence to enhancing 
spatial accuracy and computational efficiency, CSDFGD 
proves to be a powerful tool for modern Multi-Target 
Trackingers. By seamlessly integrating color information 
from multiple color spaces and applying sophisticated 
spatial transformations, CSDFGD enables designers to 
create more vibrant, coherent, and visually compelling 
designs. Moreover, the improved computational efficiency 
and feasibility for real-time applications underscore the 
practical value of CSDFGD in meeting the evolving 
demands of the design industry.
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