
Power Signal Processing and Feature Extraction Algorithms Based on 
Time-Frequency Analysis 

Dr. Supraja Veerabomma1, Dr.K.Chinna Kullayappa2,  Dr. Kethepalli Mallikarjuna3, 
Dr. Putta Brundavani4,*, Dr. P.Vijaya Kumar5 and Dr. Bepar Abdul Raheem6 

1Associate Professor, Department of ECE, G Pullaih College of Engineering and Technology, Kurnool, A.P, 
India 

2Professor, Department of ECE, PVKK Institute of Technology,  Ananthapuramu, Andhra Pradesh, India 
3Professor, Department of ECE, SVR Engineering College, Ayyaluru Metta, Nandyal, Andhra Pradesh -518502, 

India 
4Associate Professor, Department of ECE, RSR Engineering College, Kavali, SPSR Nellore, Andhra Pradesh – 

524142, India 
5 Associate Professor, Department of ECE, Aditya University, Surampalem-533437, India 

6 Professor, Department of ECE, JBR Engineering College, Moinabad, Rangareddy(Dist), Hyderabad, 
Telangana-500075,India 

 

Abstract 

Feature extraction in power signal processing plays a crucial role in accurately 
identifying and classifying various power quality disturbances. Power signals are often non-
stationary and complex, containing both transient and steady-state components, which 
necessitates the extraction of meaningful features that capture their underlying characteristics. 
In this process, features are derived from multiple domains—time, frequency, and time-
frequency—to ensure a holistic representation of the signal behavior. Time-domain features 
such as mean, standard deviation, skewness, kurtosis, root mean square (RMS), and entropy 
help in capturing statistical variations and signal energy fluctuations. Frequency-domain 
features like Total Harmonic Distortion (THD), spectral centroid, and spectral entropy 
provide insights into harmonic content and frequency distribution, which are critical for 
detecting distortions and resonances in the power system. This paper proposes an efficient 
and intelligent framework for power signal classification using a Stacked Whale 
Optimization-based Machine Learning (SWO-ML) model. The approach combines robust 
feature extraction from time, frequency, and time-frequency domains with advanced 
optimization and classification techniques to enhance power quality assessment. A total of 13 
features were extracted, including statistical, spectral, and wavelet-based parameters, from 
different signal conditions such as normal, fault, transient, harmonic distortion, and load 
switching. The SWO algorithm was employed to select the most informative 18 features out 
of the initial pool, significantly reducing dimensionality while maintaining high 
discriminative performance. The proposed SVM + SWO model achieved a classification 
accuracy of 96.8%, precision of 96.2%, recall of 95.9%, and an F1-score of 96.0%, 
outperforming baseline models such as SVM without optimization (90.2%), SVM + PSO 
(93.1%), and SVM + GA (92.4%). In addition, the training time was reduced to 1.85 seconds, 
showcasing the computational efficiency of the system. Performance evaluation over 100 
training epochs showed stable learning with final validation accuracy reaching 98.2% and a 
minimal loss of 0.05. The results confirm that the SWO-ML framework is highly effective for 
intelligent, real-time classification of power signals, offering promising applications in power 
system monitoring, smart grid stability, and fault diagnosis. 
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1. Introduction 

In recent years, Power Signal Processing (PSP) has experienced significant advancements 
driven by the growing demand for intelligent and efficient energy systems [1]. With the 
integration of renewable energy sources, electric vehicles, and smart grids, the complexity of 
power systems has increased, necessitating more robust signal processing techniques. Recent 
research has focused on real-time monitoring, fault detection, power quality analysis, and 
load forecasting using advanced wavelet transforms, empirical mode decomposition (EMD), 
and machine learning [2]. The adoption of deep learning and data-driven approaches has 
further enhanced the ability to detect transient disturbances, harmonics, and anomalies in 
power signals with high accuracy [3]. Moreover, the deployment of IoT-enabled sensors and 
edge computing has facilitated decentralized signal processing, enabling faster decision-
making and improved system reliability [4 – 6]. As the energy sector continues to evolve, 
Power Signal Processing remains a critical area of research and development, supporting the 
transition toward more sustainable and resilient power infrastructures [7]. 

Power Signal Processing combined with feature extraction has emerged as a crucial area 
in recent research, enabling more accurate and efficient analysis of complex power system 
behaviors [8]. Feature extraction techniques help in transforming raw power signals into a set 
of representative characteristics that capture essential information such as voltage 
fluctuations, current distortions, harmonic content, and transient events. Methods like Fourier 
Transform, Wavelet Transform, Hilbert-Huang Transform, and Empirical Mode 
Decomposition (EMD) have been widely used to extract time, frequency, and time-frequency 
domain features [9]. These features are then used in various applications such as fault 
diagnosis, power quality assessment, load forecasting, and condition monitoring. 
Furthermore, the integration of machine learning and deep learning models with extracted 
features has significantly improved the performance of predictive analytics and anomaly 
detection in power systems [10 -12]. With the advancement of smart grid technologies, real-
time feature extraction and processing are increasingly being implemented at the edge, 
ensuring quicker responses and more resilient power infrastructure [13]. 

Recent studies have explored the use of adaptive and data-driven feature extraction 
methods that dynamically adjust to changing signal patterns, improving the system's ability to 
detect subtle faults and emerging issues [14]. Techniques such as Principal Component 
Analysis (PCA), Independent Component Analysis (ICA), and autoencoders have been 
employed to reduce dimensionality and highlight the most informative aspects of power 
signals [15]. This not only enhances computational efficiency but also boosts the accuracy of 
subsequent classification or regression models used in diagnostics and forecasting. 
Additionally, the rise of hybrid models, combining traditional signal processing with artificial 
intelligence, has opened new avenues for real-time monitoring and automated decision-
making in power networks [16 -18]. These approaches are particularly valuable in handling 
non-stationary and noisy environments, typical in modern distributed energy systems. As the 
power grid continues to incorporate more complex and intermittent energy sources, feature 



extraction in Power Signal Processing will remain a foundational element in ensuring system 
stability, reliability, and efficiency [19-21]. 

Power Signal Processing and Feature Extraction using time-frequency analysis have 
become increasingly vital in addressing the non-stationary nature of modern power signals. 
Traditional frequency domain techniques often fall short when dealing with transient 
disturbances, harmonics, and rapidly changing load conditions. Time-frequency methods such 
as the Short-Time Fourier Transform (STFT), Wavelet Transform (WT), and Hilbert-Huang 
Transform (HHT) provide a more comprehensive view by simultaneously analyzing both 
time and frequency characteristics of power signals [22-23]. These techniques allow for the 
extraction of localized and time-varying features, which are essential for accurately 
identifying events like faults, voltage sags, switching transients, and harmonics. In particular, 
wavelet-based feature extraction has gained popularity due to its multi-resolution capability, 
making it effective for analyzing signals with sharp discontinuities or sudden changes [24-
25]. By capturing detailed time-frequency patterns, these features enhance the performance of 
machine learning and deep learning algorithms used for classification, prediction, and 
anomaly detection in smart grid environments. The combination of time-frequency analysis 
with intelligent processing continues to play a crucial role in the development of more 
responsive, adaptive, and resilient power system monitoring and control solutions [26]. 

This paper introduces a novel and efficient Stacked Whale Optimization-based Machine 
Learning (SWO-ML) framework for intelligent power signal classification, making the 
following key contributions: 

1. Multi-Domain Feature Extraction: A total of 13 distinctive features were extracted 
from power signals using time, frequency, and time-frequency domain techniques. 
These include statistical features (e.g., mean, standard deviation, skewness), spectral 
features (e.g., THD, spectral centroid), and transform-based features (e.g., wavelet 
energy and STFT magnitudes). 

2. Feature Optimization via SWO: The proposed Stacked Whale Optimization (SWO) 
algorithm effectively reduced the original feature set from 45 to 18 optimal features, 
improving classification performance while reducing computational complexity and 
overfitting. 

3. Enhanced Classification Accuracy: The proposed SVM + SWO model achieved a 
high classification accuracy of 96.8%, outperforming other approaches such as SVM 
without optimization (90.2%), SVM + PSO (93.1%), and SVM + GA (92.4%). It also 
achieved a precision of 96.2%, recall of 95.9%, and F1-score of 96.0%. 

4. Efficiency in Training Time: The SWO-based model significantly reduced the training 
time to 1.85 seconds, compared to 3.25 seconds for the baseline SVM model, 
highlighting its efficiency for real-time applications. 

5. Robust Learning Performance: Across 100 epochs, the model showed stable learning 
with validation accuracy increasing to 98.2% and loss decreasing to 0.05, 
demonstrating its capability to generalize well to unseen data. 



6. Comprehensive Signal Classification: The model accurately identified five distinct 
signal classes—normal, fault, transient, harmonic distortion, and load switching—
with an average classification accuracy of 96.32%, and a false detection rate as low as 
2.6%. 

 

2. Time-Frequency Analysis 

Time-frequency analysis is a powerful signal processing technique used to analyze signals 
whose frequency characteristics change over time, making it particularly suitable for non-
stationary and transient signals. Unlike traditional time-domain or frequency-domain methods 
that provide only partial information, time-frequency analysis offers a comprehensive view 
by representing how the spectral content of a signal evolves with time. Techniques such as 
the Short-Time Fourier Transform (STFT), Wavelet Transform (WT), Wigner-Ville 
Distribution (WVD), and Hilbert-Huang Transform (HHT) are widely used in this domain. 
These methods enable the detection and characterization of dynamic events such as sudden 
faults, harmonic distortions, switching transients, and voltage sags in various applications, 
especially in power systems, biomedical engineering, audio processing, and mechanical 
diagnostics. Among them, the Wavelet Transform is particularly effective due to its multi-
resolution analysis, allowing both high-frequency details and low-frequency trends to be 
captured simultaneously. As systems become more complex and data-rich, time-frequency 
analysis continues to be a critical tool for extracting meaningful insights from signals that 
vary over time. Time-frequency analysis is a powerful tool for examining signals whose 
frequency content varies over time, making it essential for analyzing non-stationary signals 
commonly found in power systems, biomedical data, and mechanical vibrations. One of the 
fundamental methods is the Short-Time Fourier Transform (STFT), which applies the Fourier 
Transform over short, overlapping time windows to capture localized frequency information. 
Mathematically, the STFT of a signal 𝑥𝑥(𝑡𝑡) stated in equation (1)  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥(𝑡𝑡,𝜔𝜔) = ∫ 𝑥𝑥(𝜏𝜏).𝑤𝑤(𝜏𝜏 − 𝑡𝑡). 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝜏𝜏∞
−∞                                (1) 

In equation (1) 𝑤𝑤(𝜏𝜏 − 𝑡𝑡) is a window function centered at time 𝑡𝑡, and 𝜔𝜔 is the angular 
frequency. However, STFT suffers from a fixed resolution trade-off between time and 
frequency due to the fixed window size. To overcome this limitation, the Wavelet Transform 
(WT) is employed, which offers multi-resolution analysis. The Continuous Wavelet 
Transform (CWT) is defined as in equation (2) 

𝐶𝐶𝐶𝐶𝑆𝑆𝑥𝑥(𝑎𝑎, 𝑏𝑏)  =  1
�|𝑎𝑎| ∫ 𝑥𝑥(𝑡𝑡).𝜓𝜓∗ �𝑡𝑡−𝑏𝑏

𝑎𝑎
� 𝑑𝑑𝑡𝑡∞

−∞                             (2) 

In equation (2) 𝜓𝜓(𝑡𝑡) is the mother wavelet, 𝑎𝑎 is the scale (related to frequency), and 
bbb is the time shift. The STFT, WT adapts its resolution: it uses narrow windows for high 
frequencies and wider windows for low frequencies, making it ideal for capturing transient 
events and localized features in signals. These time-frequency representations are crucial in 
Power Signal Processing, where they help in detecting faults, analyzing harmonics, and 
monitoring power quality by extracting informative features from complex, time-varying 



signals. In recent applications, time-frequency analysis has been further enhanced through the 
integration of advanced feature extraction and machine learning techniques, enabling more 
accurate interpretation and classification of signal behaviors. For instance, wavelet-based 
features such as energy coefficients, entropy, and statistical moments extracted at various 
scales are widely used to represent key characteristics of power signals for tasks like fault 
detection, transient analysis, and equipment condition monitoring. Additionally, other time-
frequency methods like the Hilbert-Huang Transform (HHT), which decomposes signals into 
Intrinsic Mode Functions (IMFs) using Empirical Mode Decomposition (EMD) followed by 
Hilbert spectral analysis, offer an adaptive and highly localized representation ideal for 
nonlinear and non-stationary signal analysis. These features, when used as input to machine 
learning models such as Support Vector Machines (SVMs), Random Forests, or deep learning 
architectures, significantly improve classification accuracy and real-time diagnostic 
capabilities. Moreover, in smart grid systems, real-time implementation of time-frequency 
techniques on edge devices enables proactive monitoring and control, ensuring the stability 
and efficiency of the power infrastructure. As signal complexity and system demands 
continue to rise, the combination of time-frequency analysis and intelligent processing 
remains a cornerstone in modern signal processing applications. In practical applications, 
once a time-frequency representation (such as from the Wavelet Transform) is obtained, 
several quantitative features can be derived for further analysis and classification. A common 
approach is to calculate the energy of wavelet coefficients at each decomposition level. For a 
signal decomposed using the Discrete Wavelet Transform (DWT), the energy 𝐸𝐸𝑗𝑗 at level 𝑗𝑗 is 
stated in equation (3) 

𝐸𝐸𝑗𝑗 =  ∑ �𝐶𝐶𝑗𝑗,𝑘𝑘�
2𝑁𝑁𝑗𝑗

𝑘𝑘=1                                                           (3) 

In equation (3) 𝐶𝐶𝑗𝑗,𝑘𝑘  represents the wavelet coefficients at level 𝑗𝑗 and position 𝑘𝑘, and 
𝑁𝑁𝑗𝑗 is the number of coefficients at that level. The total signal energy is stated in equation (4) 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 =  ∑ 𝐸𝐸𝑗𝑗𝐿𝐿
𝑗𝑗=1                                                  (4) 

The relative energy at each level is stated in equation (5) 

𝑅𝑅𝐸𝐸𝑗𝑗 =  𝐸𝐸𝑗𝑗
𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

                                                          (5) 

These energy-based features are useful in identifying disturbances, transient faults, or 
harmonic distortions in power systems. Additionally, wavelet entropy is a powerful measure 
of signal irregularity or complexity and is defined as in equation (6) 

𝐶𝐶𝐸𝐸 =  −  ∑ 𝑅𝑅𝐸𝐸𝑗𝑗 . 𝑙𝑙𝑙𝑙𝑙𝑙2�𝑅𝑅𝐸𝐸𝑗𝑗�𝐿𝐿
𝑗𝑗=1                                        (6) 

Lower entropy values indicate more regular (or less complex) signals, while higher entropy 
suggests irregularity, often linked to faults or anomalies. Moreover, time-frequency analysis 
often involves the Hilbert-Huang Transform (HHT), where a signal x(t)x(t)x(t) is first 
decomposed using Empirical Mode Decomposition (EMD) into a set of Intrinsic Mode 
Functions (IMFs) stated in equation (7) 



𝑥𝑥(𝑡𝑡) =  ∑ 𝐼𝐼𝐼𝐼𝑆𝑆𝑘𝑘(𝑡𝑡) +  𝑟𝑟𝑛𝑛(𝑡𝑡)𝑛𝑛
𝑘𝑘=1                                       (7) 

Then, applying the Hilbert Transform to each IMF gives the instantaneous frequency 𝑓𝑓𝑘𝑘(𝑡𝑡) 
stated in equation (8) 

𝑓𝑓𝑘𝑘(𝑡𝑡) =  1
2𝜋𝜋

𝑑𝑑𝜃𝜃𝑘𝑘(𝑡𝑡)
𝑑𝑑𝑡𝑡

                                         (8) 

In equation (8) 𝜃𝜃𝑘𝑘(𝑡𝑡) is the instantaneous phase obtained from the analytic signal defined in 
equation (9) 

𝑧𝑧𝑘𝑘(𝑡𝑡) = 𝐼𝐼𝐼𝐼𝑆𝑆𝑘𝑘(𝑡𝑡) + 𝑗𝑗.𝐻𝐻[𝐼𝐼𝐼𝐼𝑆𝑆𝑘𝑘(𝑡𝑡)] =  𝐴𝐴𝑘𝑘(𝑡𝑡)𝑒𝑒𝑗𝑗𝜃𝜃𝑘𝑘(𝑡𝑡)                         (9) 

These instantaneous frequencies allow precise tracking of frequency variations over time, 
which is particularly useful for diagnosing faults and dynamic events in power systems. 
Finally, the features extracted from STFT, WT, or HHT can be assembled into a feature 
vector 𝑆𝑆 =  [𝐸𝐸1,𝐸𝐸2, … . . ,𝐶𝐶𝐸𝐸, 𝑓𝑓1(𝑡𝑡), … . . ] and used as input to classifiers stated in equation 
(10) 

𝑦𝑦 = 𝐼𝐼𝑙𝑙𝑑𝑑𝑒𝑒𝑙𝑙(𝑆𝑆)                    𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑦𝑦 ∈ {𝑛𝑛𝑙𝑙𝑟𝑟𝑛𝑛𝑎𝑎𝑙𝑙, 𝑓𝑓𝑎𝑎𝑓𝑓𝑙𝑙𝑡𝑡, 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓𝑟𝑟𝑏𝑏𝑎𝑎𝑛𝑛𝑑𝑑𝑒𝑒, … }        (10) 

This combination of time-frequency analysis and machine learning enables robust monitoring 
and real-time decision-making in modern power systems, especially within smart grids and 
renewable energy environments. In modern power signal processing, once time-frequency 
analysis techniques such as the Wavelet Transform or Hilbert-Huang Transform are applied, 
several mathematical features are extracted to characterize the signal's behavior for tasks like 
fault detection or system monitoring. The extracted features, such as energy, entropy, and 
instantaneous frequency, are assembled into feature vectors and input into classifiers like 
support vector machines or neural networks to detect faults or classify events. This 
integration of mathematical feature extraction from time-frequency representations with 
intelligent algorithms forms the foundation of advanced diagnostic and monitoring tools in 
smart power systems. 

3. Time-Series Feature Extraction 

Time-series feature extraction is a critical process in analyzing sequential data, where the 
goal is to transform raw time-dependent signals into meaningful numerical descriptors that 
capture the underlying patterns, trends, and dynamics. In power systems and other domains 
involving sensor-based monitoring, time-series data often contain valuable information about 
system behavior, such as periodicity, abrupt changes, trends, or anomalies. Commonly 
extracted features include statistical measures like mean, variance, skewness, and kurtosis; 
temporal features such as peak values, zero-crossing rate, and signal duration; and frequency-
domain features like spectral entropy and dominant frequencies. Advanced techniques utilize 
sliding windows, autocorrelation, and Fourier or Wavelet Transforms to extract localized or 
periodic information. Additionally, methods like Principal Component Analysis (PCA) and t-
SNE can reduce the dimensionality of time-series features while preserving their essential 
structure. These features are often fed into machine learning models for classification, 
forecasting, or anomaly detection. In power signal processing, time-series feature extraction 



plays a pivotal role in fault diagnosis, load forecasting, and system health monitoring, 
especially when combined with intelligent algorithms that can learn from both short-term 
fluctuations and long-term temporal dependencies in the data. From 𝑋𝑋(𝑓𝑓), spectral features 
such as spectral centroid, bandwidth, and spectral entropy can be derived. For example, the 
spectral centroid (which indicates the "center of mass" of the spectrum) is stated in equation 
(11) 

𝐶𝐶𝑒𝑒𝑛𝑛𝑡𝑡𝑟𝑟𝑙𝑙𝑑𝑑𝑑𝑑 =  ∑𝑓𝑓𝑖𝑖.|𝑋𝑋(𝑓𝑓𝑖𝑖)|
∑  |𝑋𝑋(𝑓𝑓𝑖𝑖)|                                                        (11) 

In equation (11) 𝑓𝑓𝑖𝑖(𝑥𝑥) are discrete frequency bins. Another advanced method is the 
autocorrelation function (ACF), which reveals periodicity in the signal defined in equation 
(12) 

𝑅𝑅(𝜏𝜏) = 1
𝑁𝑁
∑ 𝑥𝑥(𝑡𝑡).𝑥𝑥(𝑡𝑡 + 𝜏𝜏)𝑁𝑁− 𝑗𝑗
𝑡𝑡=1                                     (12) 

ACF is particularly useful in identifying seasonality or repeated patterns in time-series data. 
For non-stationary signals, wavelet-based features are also extracted by decomposing the 
signal into multiple scales using the Discrete Wavelet Transform (DWT), as discussed earlier. 
Once extracted, these features are assembled into a feature vector with equation (13) 

𝑆𝑆 = [𝜇𝜇,𝜎𝜎2, 𝛾𝛾, 𝜅𝜅,𝑅𝑅𝐼𝐼𝑆𝑆,𝑃𝑃2𝑃𝑃,𝐶𝐶𝑒𝑒𝑛𝑛𝑡𝑡𝑟𝑟𝑙𝑙𝑑𝑑𝑑𝑑, … ]                              (13) 

Input for machine learning models or condition monitoring systems. In power signal 
applications, such extracted features help in tasks like load classification, transient detection, 
and system fault analysis by capturing both the statistical and dynamic characteristics of the 
signal over time. 

3.1 Feature Extraction with Stacked Whale Optimization (SWO-ML) 

Feature extraction with Stacked Whale Optimization-based Machine Learning (SWO-
ML) is an advanced hybrid approach for optimizing feature selection and improving 
classification performance in power signal processing. In this method, the initial raw signal is 
first transformed using techniques such as time-frequency analysis or statistical time-series 
extraction to generate a high-dimensional feature space. However, not all features contribute 
equally to model performance; thus, an efficient selection method is necessary. The Stacked 
Whale Optimization Algorithm (SWO)—an enhancement of the traditional Whale 
Optimization Algorithm (WOA)—is employed to intelligently select the most relevant 
features by simulating the bubble-net hunting behavior of humpback whales. Mathematically, 
the WOA updates the position of each solution (feature subset) using encircling mechanisms 
defined as in equation (14) 

𝐷𝐷 =∣ 𝐶𝐶 ⋅ 𝑋𝑋 ∗ (𝑡𝑡) − 𝑋𝑋(𝑡𝑡) ∣,𝑋𝑋(𝑡𝑡 + 1) = 𝑋𝑋 ∗ (𝑡𝑡) − 𝐴𝐴 ⋅ 𝐷𝐷                  (14) 

In equation (14) 𝑋𝑋𝑋 ∗ (𝑡𝑡) is the best-known solution at iteration 𝑡𝑡, 𝐴𝐴 and 𝐶𝐶 are coefficient 
vectors that control the exploration-exploitation balance. The “stacked” aspect refers to 
incorporating multiple layers or variants of WOA to refine the feature subset more effectively, 
potentially combining global and local search strategies. Once the optimal feature subset is 



selected, it is fed into machine learning classifiers such as Support Vector Machines (SVM), 
Decision Trees, or Deep Neural Networks for fault detection, load classification, or anomaly 
prediction in power systems. This synergy of SWO and ML enhances the system’s ability to 
focus only on the most informative features, reducing computational overhead while 
improving classification accuracy, robustness, and interpretability in complex power signal 
environments. This stacked optimization strategy ensures a balance between global 
exploration of the feature space and fine-tuned local exploitation around promising solutions, 
effectively avoiding local optima—a common limitation in standard metaheuristic 
algorithms. By dynamically adjusting the algorithm’s control parameters, the SWO algorithm 
improves the convergence rate and enhances the quality of feature selection. In power signal 
processing, where signals are often high-dimensional and affected by noise, redundant or 
irrelevant features can lead to poor classification accuracy and increased computational 
complexity. The SWO-ML approach mitigates these issues by selecting only the most 
significant features that contribute to the discriminatory power of the model. Furthermore, 
after optimization, classifiers trained on the reduced feature set demonstrate improved 
generalization performance across unseen data. This is especially critical in applications such 
as real-time fault detection, power quality assessment, load pattern recognition, and condition 
monitoring of smart grid components. The integration of SWO with machine learning not 
only accelerates the training process but also enhances decision-making accuracy, making it a 
highly effective framework for intelligent power signal analysis in modern, data-driven 
energy systems. 

 

 

Figure 1: Power Signal Processing with Time-Series Analysis 

The adaptability of the SWO-ML framework allows it to be customized for different 
types of power system signals, such as voltage sags, harmonics, switching transients, and 
load fluctuations shown in Figure 1. By tailoring the fitness function used in the optimization 
process—often based on classification accuracy, feature subset size, or a multi-objective 
trade-off—the algorithm can prioritize compact and highly informative feature sets. This 
flexibility makes SWO-ML suitable for both offline analysis and real-time applications, 



especially when deployed on edge devices or embedded systems in smart grids. Additionally, 
SWO can be stacked with other swarm intelligence techniques like Particle Swarm 
Optimization (PSO) or Genetic Algorithms (GA) to form hybrid models that inherit strengths 
from multiple search paradigms, further enhancing the robustness and scalability of the 
system. As a result, the SWO-ML approach not only streamlines the feature extraction and 
selection pipeline but also enables intelligent automation in power system diagnostics, 
predictive maintenance, and energy management. Its strong optimization capability, when 
integrated with powerful classifiers, ensures reliable performance even under varying load 
conditions, noisy environments, and dynamic grid operations, making it an essential tool in 
the evolution of smart and resilient energy infrastructures. 

4. Machine Learning Classification with SWO-ML 

Machine Learning Classification with Stacked Whale Optimization-based Machine 
Learning (SWO-ML) combines intelligent feature selection and powerful classification 
algorithms to enhance the accuracy and efficiency of decision-making in power signal 
processing. In this framework, after extracting a high-dimensional feature set from power 
signals using time-domain, frequency-domain, or time-frequency methods, the Stacked 
Whale Optimization Algorithm (SWO) is used to identify the optimal subset of features that 
maximizes classifier performance. The SWO algorithm simulates the hunting behavior of 
whales and uses adaptive mechanisms to balance exploration and exploitation. The core 
update equation in WOA, which SWO builds upon, is given in equation (15) 

𝑋𝑋(𝑡𝑡 + 1) = 𝑋𝑋 ∗ (𝑡𝑡) − 𝐴𝐴 ⋅∣ 𝐶𝐶 ⋅ 𝑋𝑋 ∗ (𝑡𝑡) − 𝑋𝑋(𝑡𝑡) ∣                                          (15) 

In equation (15) 𝑋𝑋(𝑡𝑡) is the current position (solution), 𝑋𝑋 ∗ (𝑡𝑡) is the position of the 
best solution found so far, and 𝐴𝐴, 𝐶𝐶 are coefficient vectors calculated as in equation (16) 

𝐴𝐴 = 2𝑎𝑎 ⋅ 𝑟𝑟1 − 𝑎𝑎,𝐶𝐶 = 2 ⋅ 𝑟𝑟2                                          (16) 

In equation (!6) 𝑎𝑎 linearly decreases from 2 to 0 over iterations, while 𝑟𝑟1 and 𝑟𝑟2 are 
random vectors in [0,1], enabling a dynamic balance between exploration and exploitation.  
Machine Learning Classification with Stacked Whale Optimization-based Machine Learning 
(SWO-ML) is a powerful framework that enhances classification performance by integrating 
optimal feature selection with robust machine learning models. In this approach, features 
extracted from power signals—often through time-domain, frequency-domain, or time-
frequency analysis—are initially high-dimensional and may contain redundant or irrelevant 
data. To address this, the Stacked Whale Optimization Algorithm (SWO) is employed to 
identify the most informative subset of features by simulating the bubble-net hunting strategy 
of whales. SWO iteratively updates candidate solutions (feature subsets) based on their 
fitness, which is typically measured by classification accuracy. The feature selection process 
is guided by adaptive equations involving vectors that control the balance between global 
exploration and local exploitation. Once the optimal features are selected, they are fed into 
machine learning classifiers such as Support Vector Machines (SVM), K-Nearest Neighbors 
(KNN), or Random Forests. These classifiers then learn to distinguish between different 
signal classes—such as fault types or operational states—based on the refined feature input. 



The integration of SWO with ML ensures that the classifiers are trained on the most relevant 
data, leading to improved accuracy, faster convergence, and better generalization on unseen 
samples. This is particularly important in power signal processing, where real-time decision-
making and precise fault detection are crucial. By reducing the feature space while 
maintaining classification performance, the SWO-ML framework offers a scalable and 
intelligent solution for automated power system monitoring and diagnostics. 

 

Figure 2: Machine Learning Model for the Power Signal Processing 

The SWO-ML framework not only enhances the efficiency of the learning process but 
also contributes to the interpretability of the classification results by focusing on the most 
critical features influencing the output shown in Figure 2. This becomes particularly valuable 
in complex power systems where understanding the cause of anomalies or disturbances is as 
important as detecting them. The reduced feature set leads to lower computational overhead, 
making the approach suitable for real-time applications, especially in edge computing 
environments where resources are limited. The adaptability of the SWO algorithm allows it to 
be fine-tuned for different classification objectives by modifying the fitness function—
whether it prioritizes accuracy, speed, or feature compactness. Additionally, when stacked or 
hybridized with other metaheuristic algorithms, SWO gains enhanced search capabilities, 
enabling it to escape local minima and converge towards globally optimal solutions. Once the 
optimized features are passed into machine learning models, the classification task benefits 
from improved precision, recall, and F1-scores, especially in noisy or non-stationary power 
signal environments. This makes SWO-ML a highly effective tool in modern smart grid 
systems, enabling accurate load classification, transient identification, and fault diagnosis 
with minimal latency and maximum reliability. As power networks continue to grow in 
complexity, the integration of intelligent optimization with machine learning through models 
like SWO-ML is key to achieving scalable, automated, and interpretable signal classification. 

 

5. Simulation Results and Analysis 



Simulation results and analysis play a crucial role in validating the effectiveness of the 
proposed SWO-ML framework for power signal classification. In the conducted simulations, 
a comprehensive dataset comprising various power signal patterns—such as normal load 
conditions, faults, transients, and harmonics—was used to evaluate the performance of the 
system. Initially, a large feature set was extracted using time-domain, frequency-domain, and 
time-frequency methods. The Stacked Whale Optimization algorithm effectively reduced this 
high-dimensional space by selecting the most relevant features, leading to a significant 
decrease in computational time and resource usage.  

 

Figure 3: Power Signal Time-Series Analysis 

Table 1: Power Signal Estimation with time-series analysis 

Signal Class Mean 
Value 

Std. 
Deviation 

Skewness Kurtosis Entropy Classification 
Accuracy (%) 

Normal 0.0023 0.0142 0.15 2.85 0.76 96.8 
Fault -0.187 0.1276 -1.12 4.93 1.45 98.1 
Transient 0.0324 0.0982 0.82 3.76 1.12 96.3 
Harmonic 
Distortion 

-0.014 0.0755 -0.37 3.12 0.93 95.5 

Load 
Variation 

0.0065 0.0463 0.23 3.05 0.81 94.9 

Average — — — — — 96.32 



 

Figure 4: Computation of Power Signal with Time-Series Analysis 

The time-series feature extraction results reveal insightful characteristics of different 
power signal classes, aiding in their accurate classification shown in Figrue 3. For the Normal 
class, the signal exhibits a low mean value (0.0023) and low standard deviation (0.0142), 
indicating signal stability with minimal fluctuations. Its low skewness (0.15) and near-
Gaussian kurtosis (2.85) further support this, while an entropy value of 0.76 reflects low 
randomness—resulting in a high classification accuracy of 96.8%. In contrast, Fault signals 
show a significantly negative mean (-0.187) and a much higher standard deviation (0.1276), 
suggesting strong signal deviations and instability presented in Table 1. The high negative 
skewness (-1.12) and peaked kurtosis (4.93) indicate a heavy-tailed distribution, while 
entropy at 1.45 implies higher complexity—yielding the highest accuracy of 98.1%. Transient 
events, characterized by a moderate mean (0.0324), high deviation (0.0982), and strong 
positive skew (0.82), suggest rapid shifts in signal behavior. These features, combined with 
kurtosis of 3.76 and entropy of 1.12, lead to 96.3% accuracy. Harmonic Distortion shows 
slight negative mean (-0.014), moderate variability (0.0755), and a negative skew (-0.37), 
implying left-tailed noise influence. Its classification accuracy is 95.5%, slightly lower due to 
overlapping spectral features presented in Figure 4. Lastly, Load Variation signals, with near-
zero mean (0.0065), low deviation (0.0463), and mild skewness (0.23), represent small but 
frequent variations, achieving 94.9% accuracy. On average, the system maintains a strong 
classification performance with an overall accuracy of 96.32%, demonstrating the 
effectiveness of the extracted statistical features in differentiating power signal conditions. 

Table 2: Feature Extraction with Time-Series Analysis 



Feature Name Domain Description Original 
Value  

Mean Time Average signal amplitude 0.0042 
Standard Deviation Time Signal variability 0.0894 
Skewness Time Signal asymmetry 0.36 
Kurtosis Time Peakedness of the signal 3.72 
Entropy Time Randomness or complexity 1.15 
RMS (Root Mean 
Square) 

Time Power of the signal 0.0918 

Peak Factor Time Ratio of peak value to RMS 1.85 
THD (Total Harmonic 
Dist.) 

Frequency Harmonic distortion in power 
signals 

4.26% 

Spectral Centroid Frequency Center of mass of the spectrum 1462 Hz 
Spectral Entropy Frequency Entropy of frequency distribution 0.97 
Wavelet Coefficient 
(D3) 

Time-
Frequency 

Detail coefficient at level 3 using 
DWT 

-0.029 

Wavelet Energy (A4) Time-
Frequency 

Energy of approximation at level 
4 

0.182 

STFT Magnitude 
(f=60Hz) 

Time-
Frequency 

Magnitude from STFT at 60 Hz 0.045 

 

 The extracted features from power signals span across time, frequency, and 
time-frequency domains, each capturing unique characteristics vital for accurate 
classification. In the time domain, the mean value of 0.0042 represents the average amplitude 
of the signal, indicating near-zero offset, while the standard deviation (0.0894) measures 
signal variability, reflecting fluctuations in power levels presented in Table 2. The skewness 
(0.36) suggests a slight asymmetry toward higher values, and the kurtosis (3.72) indicates a 
sharper peak compared to a normal distribution. Entropy (1.15) quantifies the signal’s 
randomness, and the RMS value (0.0918) denotes its power. The peak factor (1.85), the ratio 
of the signal’s peak value to RMS, highlights the presence of transients or spikes. In the 
frequency domain, features like Total Harmonic Distortion (THD) at 4.26% assess harmonic 
content, which is crucial for identifying distortion in power signals. The spectral centroid 
(1462 Hz) pinpoints the center of mass of the frequency spectrum, indicating the dominant 
frequency range, while spectral entropy (0.97) measures the spread or disorder of the 
frequency components. From the time-frequency domain, the wavelet coefficient (D3) of -
0.029 and wavelet energy (A4) of 0.182 capture localized frequency content and signal 
energy at specific resolution levels using Discrete Wavelet Transform (DWT). Additionally, 
the STFT magnitude at 60 Hz (0.045) provides a snapshot of signal strength at the 
fundamental power frequency, useful for detecting anomalies like harmonics or noise. 
Together, these diverse features offer a rich, multidimensional representation of power 
signals, enabling effective classification through machine learning models like SWO-ML. 

Table 3: Classification with Time-Series Power Signal 

Signal Type Detection 
Accuracy (%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

False Detection 
Rate (%) 



Normal 
Condition 

97.2 96.8 97.5 97.1 2.1 

Fault Condition 98.5 98.2 98.8 98.5 1.4 
Transient 
Disturbance 

96.7 96.1 96.4 96.2 2.8 

Harmonic 
Distortion 

95.9 95.5 95.1 95.3 3.2 

Load Switching 94.6 94.2 94.0 94.1 3.5 
Average 96.58 96.16 96.36 96.24 2.6 

 

Figure 5: Time-Series Analysis with Power Signal 

The classification performance across various power signal types demonstrates the 
robustness and accuracy of the proposed SWO-ML-based detection framework shown in 
Figure 5 and Table 3. For Normal Conditions, the system achieved a high detection accuracy 
of 97.2%, with a precision of 96.8%, recall of 97.5%, and F1-score of 97.1%, indicating 
reliable identification with minimal false alarms (2.1% false detection rate). Fault Conditions 
were recognized with the highest performance across all metrics, showing 98.5% accuracy, 
98.2% precision, 98.8% recall, and 98.5% F1-score, while maintaining a very low false 
detection rate of 1.4%, highlighting the model’s strong capability in fault detection. For 
Transient Disturbances, the system maintained solid performance with 96.7% accuracy, 
96.1% precision, and 96.2% F1-score, despite slightly higher complexity and variability in 
signal behavior, resulting in a 2.8% false detection rate. Harmonic Distortion classification, 
which involves overlapping spectral components, showed slightly lower but still effective 
results—95.9% accuracy and 95.3% F1-score, with a false detection rate of 3.2%. The Load 



Switching condition, being more subtle and transient in nature, presented the greatest 
challenge, resulting in 94.6% accuracy and the highest false detection rate of 3.5%. On 
average, the system achieved 96.58% detection accuracy, 96.16% precision, 96.36% recall, 
and an F1-score of 96.24%, with a low overall false detection rate of 2.6%. These results 
confirm that the SWO-ML framework is highly effective for multi-condition power signal 
classification, demonstrating its potential for real-time monitoring and intelligent fault 
diagnosis in smart grid systems. 

Table 4: Classification of Power Signal with Time-Series Analysis 

Epoc
h 

Training 
Accurac
y (%) 

Validatio
n 
Accuracy 
(%) 

Precisio
n (%) 

Recal
l (%) 

F1-
Scor
e 
(%) 

Loss 
Valu
e 

10 85.2 83.7 84.1 83.3 83.7 0.47 

20 89.5 87.8 88.2 87.4 87.8 0.38 

30 92.4 91.1 91.3 90.7 91.0 0.29 

40 94.6 93.5 93.8 93.2 93.5 0.22 

50 96.1 95.4 95.7 95.1 95.4 0.16 

60 97.3 96.6 96.8 96.4 96.6 0.12 

70 98.0 97.2 97.5 97.0 97.2 0.09 

80 98.4 97.6 97.9 97.5 97.7 0.07 

90 98.6 97.9 98.1 97.8 97.9 0.06 

100 98.9 98.2 98.4 98.1 98.2 0.05 

 

 



 

Figure 6: Classification of Power Signal with Time-Series Analysis 

The training and validation performance across increasing epochs demonstrates the 
effectiveness and convergence of the SWO-ML-based classification model for power signal 
analysis presented in Table 4. Initially, at epoch 10, the model starts with a moderate training 
accuracy of 85.2% and validation accuracy of 83.7%, along with a precision of 84.1%, recall 
of 83.3%, and F1-score of 83.7%, indicating that the model is still in the early learning phase 
with a relatively high loss value of 0.47. As the epochs increase, there is a consistent 
improvement in all performance metrics. By epoch 30, the validation accuracy reaches 
91.1%, and the F1-score rises to 91.0%, showing significant learning progress and better 
generalization with a reduced loss of 0.29. The model continues to improve steadily, reaching 
95.4% validation accuracy and 95.4% F1-score at epoch 50, as the loss drops further to 0.16 
presented in Table 6. The highest performance is observed at epoch 100, where the model 
achieves 98.9% training accuracy and 98.2% validation accuracy, with precision, recall, and 
F1-score all above 98%, and a minimal loss value of 0.05, indicating excellent convergence 
and low classification error. The consistent rise in accuracy and F1-score, along with the 
steady decline in loss, highlights the strong learning capacity and stability of the model. 
These results confirm that the SWO-ML framework effectively optimizes feature selection 
and learning, resulting in a highly accurate and reliable classifier for power signal 
classification tasks. 

Table 5: Comparative Analysis of Time-series Power Signal 

Method Accuracy Precision Recall F1- Features Training 



(%) (%) (%) Score 
(%) 

Used Time (s) 

SVM (No 
Optimization) 

90.2 89.5 88.9 89.2 45 3.25 

SVM + PSO 93.1 92.6 92.0 92.3 25 2.40 
SVM + GA 92.4 91.8 91.0 91.4 28 2.65 
KNN + SWO 94.6 94.0 93.5 93.7 20 1.90 
RF + SWO 95.3 94.7 94.3 94.5 19 2.10 
SVM + SWO 
(Proposed) 

96.8 96.2 95.9 96.0 18 1.85 

 

 

Figure 7: Comparative analysis of the power signal 

The comparative performance analysis of different machine learning classifiers and 
optimization methods clearly highlights the effectiveness of the proposed SVM + Stacked 
Whale Optimization (SWO) framework presented in table 5 and Figrue 7. The baseline SVM 
without optimization achieves an accuracy of 90.2% with 45 features and a training time of 
3.25 seconds, but its performance is limited due to the high-dimensional feature space and 
lack of optimization. When integrated with Particle Swarm Optimization (PSO) and Genetic 
Algorithm (GA), SVM shows improvement—SVM + PSO reaches 93.1% accuracy using 25 
features and requires 2.40 seconds, while SVM + GA records 92.4% accuracy with 28 
features and 2.65 seconds of training. Both methods improve precision and recall by reducing 
feature redundancy. However, the proposed SVM + SWO model significantly outperforms all 
other methods, achieving the highest accuracy of 96.8%, precision of 96.2%, recall of 95.9%, 



and F1-score of 96.0%, using only 18 optimized features and a reduced training time of 1.85 
seconds. This indicates that SWO not only enhances classification performance but also 
reduces computational complexity through efficient feature selection. Other models using 
SWO, such as KNN + SWO and RF + SWO, also perform well with 94.6% and 95.3% 
accuracy respectively, and maintain low feature counts and training times. Nonetheless, the 
SVM + SWO combination proves to be the most effective in balancing accuracy, efficiency, 
and interpretability, making it the optimal choice for power signal classification tasks. 

The experimental results and comparative analysis clearly demonstrate the superiority of 
the proposed SWO-ML framework for power signal classification. By integrating Stacked 
Whale Optimization (SWO) for feature selection, the model achieves a highly optimized 
feature subset that not only improves classification performance but also significantly reduces 
computational complexity. This is evident in the lower training times and fewer features used, 
compared to traditional and other evolutionary optimization methods like PSO and GA. The 
SVM + SWO model, in particular, delivers the highest accuracy, precision, recall, and F1-
score, indicating its robustness and reliability in identifying various signal conditions such as 
faults, transients, harmonic distortions, and load variations. The consistent performance 
improvements across epochs further validate the learning stability and convergence of the 
model, with accuracy steadily increasing and loss decreasing over time. Moreover, the 
comprehensive feature extraction across time, frequency, and time-frequency domains 
enriches the input space, capturing both statistical and spectral properties critical to power 
signal behavior. The classifier's ability to maintain high performance across different signal 
types and under various operating conditions underscores its practical applicability in real-
world power systems for monitoring, diagnostics, and fault prediction. The integration of 
intelligent optimization with machine learning creates a powerful, scalable solution capable 
of handling the complexity of modern power signal processing tasks. The results suggest that 
SWO-ML is not only accurate but also efficient, offering a valuable tool for smart grid 
applications and real-time power quality assessment. 

6. Conclusion 

This paper presents a robust and efficient approach for power signal classification using a 
novel Stacked Whale Optimization-based Machine Learning (SWO-ML) framework. By 
leveraging comprehensive feature extraction techniques across time, frequency, and time-
frequency domains, the model captures critical signal characteristics essential for accurate 
classification. The integration of SWO effectively reduces feature dimensionality while 
preserving discriminative power, resulting in enhanced classification accuracy, reduced 
training time, and improved model generalization. Experimental results demonstrate that the 
proposed SWO-ML framework significantly outperforms traditional models and other 
optimization-based approaches in terms of accuracy, precision, recall, and F1-score across 
various signal types including faults, transients, harmonic distortion, and load variations. The 
model also shows stable performance improvements over training epochs, further confirming 
its learning capability and robustness. The proposed system offers a promising and scalable 
solution for intelligent power signal monitoring and analysis in modern smart grid 
environments. 
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