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Abstract 

Path selection in tourism route planning involves optimizing travel routes to 

maximize tourist satisfaction and minimize travel time, cost, or other constraints. This task 

can be complex due to factors like visitor preferences, attraction availability, and travel 

schedules. Tourism planners employ algorithms, such as Genetic Algorithms (GA) or 

probability-based approaches, to identify efficient routes by analyzing large datasets. These 

algorithms evaluate potential paths based on criteria like distance, attraction variety, and user 

satisfaction, often adapting based on real-time data and user feedback to ensure optimal 

results. Dynamic programming and probabilistic models can further enhance path selection 

by consideSring changing conditions and transitional probabilities between destinations, 

providing tourists with tailored, flexible routes that meet their preferences while adhering to 

practical constraints. This paper investigates the application of Weighted Ranking Ant Colony 

Optimization (WRACO) in tourism route planning, aiming to enhance travel experiences by 

efficiently navigating the complexities of tourism landscapes. WRACO integrates a weighted 

ranking scheme into the Ant Colony Optimization (ACO) framework, biasing ant decision-

making towards more attractive paths. Through a comprehensive analysis of simulation 

results, WRACO demonstrates its efficacy in iteratively refining travel itineraries, 

minimizing travel distances while ensuring convergence to optimal or near-optimal solutions. 

Through simulation, WRACO achieves a significant reduction in travel distances, with the 

best tour length minimized to 200 units over ten iterations. Comparative analysis with other 

optimization algorithms reveals WRACO's superiority, showcasing a notably low best tour 

length and high solution quality. 
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1. Introduction 

Tourism route planning involves crafting an itinerary that optimizes the experience for 

travelers, considering factors like attractions, transportation, and time constraints [1]. It 

begins with research into destinations' highlights, cultural significance, and logistical 

feasibility. Then, routes are mapped out, balancing must-see landmarks with off-the-beaten-

path gems, while ensuring manageable travel distances [2]. Flexibility is key, allowing for 

spontaneous detours or extended stays at particularly captivating spots. Integration of local 

transportation options, such as trains or buses, adds authenticity to the journey while 

minimizing environmental impact [3]. Additionally, considering seasonal variations and peak 

tourist times helps avoid overcrowding and enhances enjoyment. Path selection in tourism 

route planning involves carefully choosing the specific routes that travellers will take to 

navigate between destinations and attractions [4]. This process is influenced by various 

factors such as the geographical layout, available transportation options, time constraints, and 

the preferences of the travellers. The selection of paths aims to create an itinerary that offers a 

balance between efficiency and enjoyment, ensuring that travelers can experience the 

highlights of a destination while also taking in scenic and cultural attractions along the way 

[5]. Factors such as distance, travel time, and accessibility play a crucial role in determining 

the optimal paths [6]. Additionally, considerations like the seasonality of certain attractions or 

events, as well as the availability of accommodations and dining options, help in crafting a 

well-rounded itinerary. 

Moreover, path selection involves anticipating potential challenges such as traffic 

congestion, road closures, or adverse weather conditions, and devising contingency plans 

accordingly [7-9]. Tourism route planning is a fundamental aspect of crafting immersive and 

memorable travel experiences for individuals exploring new destinations. Route planning 

involves the meticulous selection of paths that guide travelers between attractions, landmarks, 

and cultural sites [10-11]. This process requires a delicate balance between efficiency and 

discovery, considering factors such as distance, transportation options, time constraints, and 

the unique interests of the travelers[12]. By thoughtfully navigating these considerations, 

tourism route planning endeavors to create cohesive itineraries that showcase the diverse 

offerings of a destination while ensuring a seamless and enjoyable journey for adventurers. 

The application of Genetic Algorithms (GAs) in optimizing path selection within tourism 

route planning presents a cutting-edge approach to crafting efficient and enriching travel 

itineraries [13-15]. GAs, inspired by the principles of natural selection and evolution, 



iteratively generate and refine potential solutions to complex optimization problems. Within 

tourism route planning, GAs can be employed to dynamically explore and evaluate numerous 

path combinations, considering factors such as distance, travel time, attraction popularity, and 

traveler preferences [16-18]. Through successive generations of candidate solutions, GAs 

identifies high-quality routes that balance logistical efficiency with the diversity and appeal 

of visited destinations [19-21]. By harnessing the power of computational intelligence, GAs 

offers a versatile tool for planners to adaptively optimize routes, accommodating changing 

conditions and preferences to deliver truly personalized and rewarding travel experiences for 

tourists [22-25]. 

This paper makes several significant contributions to the field of tourism route 

planning and optimization. Firstly, it introduces the innovative Weighted Ranking Ant Colony 

Optimization (WRACO) algorithm, which integrates a weighted ranking scheme into the Ant 

Colony Optimization (ACO) framework. This novel approach biases ant decision-making 

towards more attractive paths, leading to more efficient and effective route optimization. 

Secondly, through a comprehensive analysis of simulation results, the paper demonstrates 

WRACO's ability to iteratively refine travel itineraries, significantly reducing travel distances 

while ensuring convergence to optimal or near-optimal solutions. This contributes to 

enhancing travel experiences by crafting well-organized and enjoyable travel routes for 

tourists. Additionally, the comparative analysis with other optimization algorithms highlights 

WRACO's superiority, showcasing its ability to achieve highly optimized travel routes with 

notably low best tour lengths and high solution quality. 

2. System Model 

In tourism route planning, the objective is to find an optimal route that visits a set of 

attractions while considering constraints like time, distance, and preferences. Let 𝑁𝑁 be the 

number of attractions. 𝐷𝐷 be the distance matrix where 𝐷𝐷[𝑖𝑖][𝑗𝑗] represents the distance between 

attraction iii and attraction 𝑗𝑗. The goal is to find a permutation of attractions 𝑃𝑃 that minimizes 

the total travel distance. The fitness function measures how "fit" a route is based on its total 

distance. The fitness function 𝐹𝐹 can be defined as in equation (1) 

𝐹𝐹(𝑃𝑃) =  1
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷 (𝑃𝑃)

                                                     (1) 

In equation (1) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝑖𝑖𝐷𝐷𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷 (𝑃𝑃) =  ∑ 𝐷𝐷[𝑃𝑃[𝑖𝑖]][𝑃𝑃[𝑖𝑖 + 1]] + 𝐷𝐷[𝑃𝑃[𝑁𝑁 − 1]][𝑃𝑃[0]]𝑁𝑁−1
𝐷𝐷=1  



Here, 𝑃𝑃[𝑖𝑖] represents the 𝑖𝑖 − 𝑇𝑇ℎ attraction in the route. Generate an initial population of 

possible routes 𝑃𝑃[0] randomly. Each route is a permutation of the attractions. Use a selection 

mechanism (e.g., tournament selection or roulette wheel selection) to choose routes for 

reproduction based on their fitness values. Routes with higher fitness have a higher chance of 

being selected. Combine two parent routes to create offspring. A common crossover 

technique for permutations is the Order Crossover (OX) as in equation (2) and (3) 

𝑃𝑃𝑇𝑇𝑃𝑃𝐷𝐷𝐷𝐷𝑇𝑇 1 = [𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸]                                                       (2) 

𝑃𝑃𝑇𝑇𝑃𝑃𝐷𝐷𝐷𝐷𝑇𝑇 2 = [𝐶𝐶,𝐴𝐴,𝐸𝐸,𝐵𝐵,𝐷𝐷]                                                         (3) 

Select a random segment from Parent 1, and fill in the remaining positions with the order 

of elements from Parent 2. Introduce random changes to the offspring to maintain genetic 

diversity. A simple mutation could swap two attractions in the route defined in equation (4) 

𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝐷𝐷(𝑃𝑃) = 𝑃𝑃[𝑖𝑖],𝑃𝑃[𝑗𝑗] → 𝑃𝑃[𝑗𝑗],𝑃𝑃[𝑖𝑖] 𝑓𝑓𝑇𝑇𝑃𝑃 𝑖𝑖, 𝑗𝑗 ∈ [0,𝑁𝑁 − 1]                 (4) 

Replace the old population with the new generation. This can be done by keeping the best 

routes from the old generation or replacing the entire population.  

Algorithm Steps 

1. Initialize the population of routes. 

2. Evaluate the fitness of each route using the fitness function. 

3. Select pairs of routes for reproduction. 

4. Crossover selected routes to create new offspring. 

5. Mutate the offspring. 

6. Evaluate the fitness of the new generation. 

7. Repeat steps 3-6 until a stopping criterion is met (e.g., a maximum number of 

generations or a satisfactory fitness level).  

Using Genetic Algorithms for tourism route planning offers a robust approach to 

optimizing path selection by leveraging evolutionary strategies to explore and exploit 

possible solutions effectively. The formulation of the problem through a fitness function, 

combined with genetic operations, facilitates the discovery of routes that not only meet but 



exceed traditional optimization methods in efficiency and effectiveness represented in the 

equation (5) and equation (6) 

Fitness Function is computed as 𝐹𝐹(𝑃𝑃) =  1
∑ 𝐷𝐷[𝑃𝑃[𝐷𝐷]][𝑃𝑃[𝐷𝐷+1]]+𝐷𝐷[𝑃𝑃[𝑁𝑁−1]][𝑃𝑃[0]]𝑁𝑁−1
𝑖𝑖=1

                  (5) 

Mutation computed using equation 𝑃𝑃[𝑖𝑖],𝑃𝑃[𝑗𝑗] → 𝑃𝑃[𝑗𝑗],𝑃𝑃[𝑖𝑖]                        (6) 

The application of Genetic Algorithms (GAs) in optimizing path selection for tourism 

route planning involves employing evolutionary principles to efficiently determine the best 

routes that minimize travel distance or time while maximizing the number of attractions 

visited. The core of this optimization process is the formulation of a fitness function, which 

measures the quality of each potential route by calculating its total distance based on a 

distance matrix. Specifically, the fitness function 𝐹𝐹(𝑃𝑃) is defined as the reciprocal of the total 

distance traveled, allowing routes with shorter distances to have higher fitness scores. The 

genetic algorithm begins by generating an initial population of routes, which are permutations 

of the attractions. Through a selection process, routes with better fitness are chosen to 

reproduce, followed by crossover operations to create new offspring routes. To maintain 

genetic diversity, mutations are introduced by randomly swapping two attractions in a route. 

The algorithm iteratively evaluates the fitness of the newly generated routes and replaces the 

old population with these offspring, continuing this cycle until a stopping criterion is met, 

such as reaching a maximum number of generations or achieving a satisfactory fitness level. 

This evolutionary approach allows GAs to explore a vast solution space efficiently, 

potentially leading to near-optimal routing solutions that outperform traditional optimization 

methods.  

3. Ant Colony Genetic Optimization 

Ant Colony Genetic Optimization (ACGO) represents a sophisticated amalgamation of 

Ant Colony Optimization (ACO) and Genetic Algorithms (GA) tailored for route planning in 

tourism. ACO mimics the foraging behavior of ants to find optimal paths, while GA draws 

inspiration from the principles of natural selection and evolution to iteratively refine 

solutions. The derivation of ACGO involves combining the pheromone trail updating 

mechanism of ACO with the genetic operations of GA to create a hybrid algorithm that 

leverages the strengths of both approaches. The ACO component involves constructing a 

pheromone matrix 𝜏𝜏τ to represent the desirability of paths. At each iteration, ants 

probabilistically select their next destination based on pheromone levels and heuristic 



information. The amount of pheromone deposited on each edge is determined by the quality 

of the solution. This process encourages exploration of promising paths while exploiting 

previously discovered routes. The process of proposed optimization model is presented in 

Figure 1. 



 

Figure 1: Flow Chart of GA-based ACO 



 

On the other hand, the GA component involves encoding potential solutions (routes) as 

chromosomes in a population. Genetic operators such as selection, crossover, and mutation 

are applied to generate new candidate solutions. Fitness evaluation assesses the quality of 

each solution, guiding the evolutionary process towards optimal or near-optimal solutions. 

The fusion of ACO and GA in ACGO involves incorporating genetic operators into the 

pheromone update mechanism of ACO. This hybridization allows for more efficient 

exploration of the solution space, enabling the algorithm to escape local optima and converge 

towards globally optimal solutions. Specifically, crossover and mutation operations are 

applied to the pheromone matrix, simulating the evolutionary process to enhance solution 

diversity and robustness. In ACO, we start with constructing a pheromone matrix 𝜏𝜏 to 

represent the desirability of paths between nodes in the graph. The amount of pheromone on 

each edge is updated iteratively based on the quality of solutions found by the ants. The 

probability 𝑃𝑃𝐷𝐷𝑖𝑖𝑘𝑘  of ant 𝑘𝑘 choosing edge (𝑖𝑖,) at iteration 𝑇𝑇 can be calculated using the equation 

(7)  

𝑃𝑃𝐷𝐷𝑖𝑖𝑘𝑘 =  �𝜏𝜏𝑖𝑖𝑖𝑖�
𝛼𝛼.�𝜂𝜂𝑖𝑖𝑖𝑖�

𝛽𝛽 

∑ �𝜏𝜏𝑖𝑖𝑖𝑖�
𝛼𝛼 .�𝜂𝜂𝑖𝑖𝑖𝑖�

𝛽𝛽
𝑙𝑙∈𝑁𝑁𝑘𝑘

                                                 (7) 

In equation (7) 𝛼𝛼 and 𝛽𝛽 are parameters controlling the relative importance of 

pheromone and heuristic information 𝜂𝜂𝐷𝐷𝑖𝑖  respectively, and 𝑁𝑁𝑘𝑘represents the set of feasible 

neighbors for ant 𝑘𝑘 at iteration 𝑇𝑇. ACGO involves incorporating genetic operators into the 

pheromone update mechanism of ACO. This hybridization enhances solution diversity and 

robustness. Specifically, crossover and mutation operations are applied to the pheromone 

matrix, simulating the evolutionary process. Let's denote the pheromone level on edge (𝑖𝑖,) at 

iteration 𝑇𝑇 as 𝜏𝜏𝐷𝐷𝑖𝑖(𝑇𝑇). The pheromone update rule incorporates both pheromone evaporation 

and pheromone deposit as in equation (8) 

𝜏𝜏𝑖𝑖𝑗𝑗(𝑇𝑇 + 1) = (1− 𝜌𝜌) ⋅ 𝜏𝜏𝑖𝑖𝑗𝑗(𝑇𝑇) + 𝛥𝛥𝜏𝜏𝑖𝑖𝑗𝑗(𝑇𝑇)                          (8) 

In equation (8) 𝜌𝜌 is the evaporation rate and 𝛥𝛥𝜏𝜏𝑖𝑖𝑗𝑗(𝑇𝑇) represents the pheromone deposit 

on edge (𝑖𝑖,) at iteration 𝑇𝑇. This deposit is determined by the quality of solutions found by the 

ants and is influenced by the genetic operators. Genetic operators are applied to adjust Δ𝜏𝜏𝑖𝑖(𝑇𝑇) 

during the update process, promoting exploration and exploitation of the solution space. 

Crossover and mutation operations can be adapted to manipulate the pheromone levels, 



analogous to their application on chromosomes in GA.In tourism route planning, the 

objective is to find an optimal path that visits a set of attractions while minimizing the total 

distance traveled and maximizing the overall enjoyment (which can be quantified based on 

the attractions visited).  

Let  𝐷𝐷(𝑖𝑖, 𝑗𝑗) be the distance between attractions 𝑖𝑖 and 𝑗𝑗; 𝐴𝐴 be the set of attractions to be visited 

and 𝑁𝑁 be the total number of attractions. The objective can be expressed mathematically asin 

equation (9) 

𝑀𝑀𝑖𝑖𝐷𝐷𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝐷𝐷 𝑍𝑍 =  ∑ 𝐷𝐷�𝑃𝑃(𝑘𝑘),𝑃𝑃(𝐾𝐾 + 1)�𝑁𝑁−1
𝑘𝑘=1                            (9) 

In equation (9) 𝑃𝑃 is a permutation of the attractions. The ACO component simulates the 

behavior of ants that deposit pheromones on paths they take, which influences the probability 

of other ants choosing the same paths. The pheromone level 𝜏𝜏(𝑖𝑖, 𝑗𝑗) on the path from attraction 

iii to attraction 𝑗𝑗 is updated using equation (10) 

𝜏𝜏(𝑖𝑖, 𝑗𝑗) = (1 − 𝜌𝜌) ⋅ 𝜏𝜏(𝑖𝑖, 𝑗𝑗) + 𝛥𝛥𝜏𝜏(𝑖𝑖, 𝑗𝑗)                         (10) 

In equation (10) 𝜌𝜌 is the pheromone evaporation rate and 𝛥𝛥𝜏𝜏(𝑖𝑖, 𝑗𝑗) is the amount of pheromone 

deposited, typically calculated based on the quality of the solution stated in equation (11) 

𝛥𝛥𝜏𝜏(𝑖𝑖, 𝑗𝑗) = 𝑄𝑄/𝑍𝑍                                          (11) 

In equation (11) 𝑄𝑄 being a constant and 𝑍𝑍 the total distance of the solution. The probability 

𝑃𝑃(𝑖𝑖, 𝑗𝑗) of moving from attraction 𝑖𝑖 to attraction 𝑗𝑗 is given in equation (12) 

𝑃𝑃(𝑖𝑖, 𝑗𝑗) =  𝜏𝜏(𝐷𝐷,𝑖𝑖)𝛼𝛼.𝜂𝜂(𝐷𝐷,𝑖𝑖)𝛽𝛽

∑ 𝜏𝜏(𝐷𝐷,𝑖𝑖)𝛼𝛼.𝜂𝜂(𝐷𝐷,𝑖𝑖)𝛽𝛽𝑘𝑘∈𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
                             (12) 

In equation (12) 𝜂𝜂(𝑖𝑖, 𝑗𝑗) is the heuristic information (e.g., the inverse of the distance). α and β 

are parameters that control the relative importance of pheromone and heuristic information. 

In the genetic algorithm component, an initial population of routes (chromosomes) is 

generated, and the fitness 𝐹𝐹(𝑃𝑃) of each route 𝑃𝑃 is evaluated as in equation (13) 

𝐹𝐹(𝑃𝑃) =  1
𝑍𝑍
                                     (13) 

In equation (13) 𝑍𝑍 is the total distance of the route. The GA applies selection, crossover, and 

mutation operations. Select routes based on fitness defined in equation (14) 

𝑃𝑃𝐷𝐷𝐷𝐷𝑇𝑇𝐷𝐷𝐷𝐷𝑇𝑇𝐷𝐷𝑠𝑠 = 𝐷𝐷𝐷𝐷𝑇𝑇𝐷𝐷𝐷𝐷𝑇𝑇(𝑃𝑃) 𝑇𝑇𝐷𝐷𝐷𝐷𝑇𝑇𝑃𝑃𝑎𝑎𝑖𝑖𝐷𝐷𝑎𝑎 𝑇𝑇𝑇𝑇 𝐹𝐹(𝑃𝑃)               (14) 



Perform crossover to create offspring defined in equation (15) 

𝑃𝑃𝑇𝑇𝑜𝑜𝑜𝑜𝐷𝐷𝑜𝑜𝑜𝑜𝐷𝐷𝐷𝐷𝑜𝑜  = 𝐷𝐷𝑃𝑃𝑇𝑇𝐷𝐷𝐷𝐷𝑇𝑇𝑐𝑐𝐷𝐷𝑃𝑃 (𝑃𝑃1,𝑃𝑃2)                                       (15) 

Apply mutation by swapping two attractions stated in equation (16) 

𝑃𝑃𝑚𝑚𝑚𝑚𝑇𝑇𝐷𝐷𝑠𝑠  = 𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷 (𝑃𝑃)                                            (16) 

The ACO and GA components work iteratively. The ACO explores new paths and deposits 

pheromones, while the GA refines these paths through genetic operations. After each 

iteration, the best routes from both approaches are combined, and pheromone levels are 

updated based on the new solutions. The Ant Colony Genetic Optimization algorithm 

effectively optimizes tourism route planning by integrating the exploration capabilities of 

ACO with the exploitation strengths of GAs. This hybrid approach allows for more efficient 

search and higher-quality solutions, ultimately leading to better tourism experiences. 

4. Weighted Ranking Ant Colony Optimization (WRACO) 

Weighted Ranking Ant Colony Optimization (WRACO) represents a specialized variant 

of Ant Colony Optimization (ACO) tailored specifically for optimizing path selection in 

tourism route planning. In WRACO, the traditional pheromone update mechanism of ACO is 

augmented with a weighted ranking scheme to enhance the exploration-exploitation trade-off 

and improve solution quality. In traditional ACO, ants probabilistically select their next 

destination based on pheromone levels and heuristic information. Pheromone trails on edges 

are updated iteratively based on the quality of solutions found by the ants. This encourages 

the exploration of promising paths while exploiting previously discovered routes. WRACO 

introduces a weighted ranking scheme to bias ant decision-making towards edges with higher 

desirability. This scheme assigns weights to edges based on their attractiveness, considering 

factors such as distance, attractiveness of attractions, and historical visitation patterns. The 

probability 𝑃𝑃𝐷𝐷𝑖𝑖𝑘𝑘  of ant 𝑘𝑘k choosing edge (𝑖𝑖,) is then calculated as in equation (17) 

𝑃𝑃𝐷𝐷𝑖𝑖𝑘𝑘 =  �𝜏𝜏𝑖𝑖𝑖𝑖�
𝛼𝛼.�𝜂𝜂𝑖𝑖𝑖𝑖�

𝛽𝛽.�𝜔𝜔𝑖𝑖𝑖𝑖�
𝛾𝛾 

∑ �𝜏𝜏𝑖𝑖𝑖𝑖�
𝛼𝛼 .�𝜂𝜂𝑖𝑖𝑖𝑖�

𝛽𝛽�𝜔𝜔𝑖𝑖𝑖𝑖�
𝛾𝛾

𝑙𝑙∈𝑁𝑁𝑘𝑘
                                   (17) 

In equation (!7) 𝜔𝜔𝐷𝐷𝑖𝑖  represents the weight assigned to edge (𝑖𝑖,𝑗𝑗) based on its 

attractiveness, and 𝛾𝛾 is a parameter controlling the influence of edge weights. WRACO 

integrates the weighted ranking scheme into the pheromone update mechanism of ACO. This 

hybridization allows for a more effective exploration of the solution space by biasing ant 



exploration towards potentially more promising paths while still maintaining diversity and 

adaptability. The pheromone update rule in WRACO is similar to traditional ACO, but the 

pheromone deposit 𝛥𝛥𝜏𝜏𝑖𝑖𝑗𝑗(𝑇𝑇)  on each edge is influenced by both the quality of solutions found 

by the ants and the edge weights derived from the ranking scheme. This ensures that edges 

with higher attractiveness receive more pheromone deposit, reinforcing their desirability for 

future ants. WRACO integrates the weighted ranking scheme into the pheromone update 

mechanism of ACO. During the pheromone update process, the pheromone deposit Δ𝜏𝜏𝑖𝑖(𝑇𝑇) on 

each edge is influenced by both the quality of solutions found by the ants and the edge 

weights derived from the ranking scheme. The pheromone update rule in WRACO remains 

similar to traditional ACO, but the amount of pheromone deposit on each edge is adjusted 

based on the attractiveness weights. 

 

Figure 2: Path Estimation with WRACO 

As ants traverse the graph and construct solutions, the edges they visit receive 

pheromone deposits based on their attractiveness, as shown in Figure 2. This reinforcement 

of pheromone levels on attractive edges guides future ants to explore these paths 

preferentially, enhancing the overall solution quality and convergence speed. Path Selection 

with Weighted Ranking Ant Colony Optimization (WRACO) offers a refined approach to 

optimizing routes in tourism. This technique blends the probabilistic decision-making of 

traditional Ant Colony Optimization (ACO) with a weighted ranking scheme to bias ant 

exploration towards more attractive paths. In WRACO, the pheromone update mechanism of 

ACO is augmented to incorporate the edge weights derived from the ranking scheme. During 

the pheromone update process, the pheromone deposit Δ𝜏𝜏𝑖𝑖(𝑇𝑇)Δτij(t) on each edge is 

influenced by both the quality of solutions found by the ants and the edge weights. The 

pheromone update rule in WRACO remains similar to traditional ACO, but the amount of 

pheromone deposit on each edge is adjusted based on the attractiveness weights. This ensures 



that edges with higher attractiveness receive more pheromone deposit, reinforcing their 

desirability for future ants. 

The Weighted Ranking Ant Colony Optimization (WRACO) algorithm is an 

enhancement of the traditional Ant Colony Optimization (ACO) algorithm, incorporating a 

weighted ranking system to prioritize solutions based on their desirability. This approach is 

particularly useful in scenarios where multiple objectives are involved, and certain paths or 

solutions are preferred based on a predefined set of weighted criteria. WRACO modifies the 

pheromone update rules to emphasize the higher-ranked solutions, allowing the algorithm to 

converge more quickly toward optimal or near-optimal solutions. In WRACO, the objective 

is to find an optimal path that maximizes the weighted ranking score. Given a set of possible 

solutions 𝑆𝑆 = {𝐷𝐷1, 𝐷𝐷2, … , 𝐷𝐷𝐷𝐷}, each solution 𝐷𝐷𝐷𝐷 has a rank 𝑅𝑅(𝐷𝐷𝐷𝐷) and a weight 𝑤𝑤𝐷𝐷 associated 

with it. These weights correspond to the importance of each solution and influence the 

pheromone deposition process, guiding the ants toward more desirable solutions. 

For a given path 𝑃𝑃 = {𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑘𝑘}, the total weighted ranking score 𝑊𝑊(𝑃𝑃) is 

defined as in equation (18) 

𝑊𝑊(𝑃𝑃) =  ∑ 𝑤𝑤𝐷𝐷 .𝑅𝑅(𝑃𝑃𝐷𝐷)𝑘𝑘
𝐷𝐷=1                                  (18) 

In equation (18) 𝑤𝑤𝐷𝐷 is the solution 𝑃𝑃𝐷𝐷 in the path 𝑃𝑃. The pheromone update in 

WRACO is weighted by the rank and importance of the solutions. The pheromone 𝜏𝜏(𝑖𝑖, 𝑗𝑗) on 

the edge between nodes 𝑖𝑖 and 𝑗𝑗 is updated as in equation (19) 

𝜏𝜏(𝑖𝑖, 𝑗𝑗) = (1 − 𝜌𝜌) ⋅ 𝜏𝜏(𝑖𝑖, 𝑗𝑗) + 𝛥𝛥𝜏𝜏(𝑖𝑖, 𝑗𝑗)                    (19) 

In equation (19) 𝜌𝜌 is the evaporation rate, controlling the decay of pheromone over 

time; 𝛥𝛥𝜏𝜏(𝑖𝑖, 𝑗𝑗) is the amount of pheromone deposited on the edge between 𝑖𝑖 and 𝑗𝑗. In 

WRACO, 𝛥𝛥𝜏𝜏(𝑖𝑖, 𝑗𝑗) is influenced by the weighted ranking score computed in equation (20) 

𝛥𝛥𝜏𝜏(𝑖𝑖, 𝑗𝑗) = 𝑤𝑤 ⋅ 𝑸𝑸
𝑾𝑾(𝑷𝑷)

                                            (20) 

In equation (20) 𝑤𝑤 is the weight associated with the rank of the solution; 𝑄𝑄 is a 

constant representing the pheromone intensity and 𝑊𝑊(𝑃𝑃) is the total weighted ranking score 

of the solution 𝑃𝑃. In WRACO, the ranking system assigns a rank 𝑅𝑅(𝐷𝐷𝑖𝑖) to each solution 𝐷𝐷𝐷𝐷 

based on its performance. The weight 𝑤𝑤𝐷𝐷 is determined by the importance or relevance of the 

solution in the overall optimization context. Higher-ranked solutions are given more weight, 

influencing pheromone deposition more significantly. For example, if solution 𝐷𝐷1 is highly 



desirable, it will receive a higher rank (𝐷𝐷1) and weight 𝑤𝑤1, thus attracting more pheromone 

deposition.  

1. Initialize Parameters: Set pheromone levels, weights, and ranking criteria. 

2. Construct Solutions: Each ant builds a path based on weighted probabilities. 

3. Evaluate Solutions: Calculate the weighted ranking score 𝑊𝑊(𝑃𝑃) for each path 

𝑃𝑃. 

4. Update Pheromones: Adjust pheromone levels based on weighted ranking 

scores. 

5. Convergence Check: Repeat until a stopping criterion (e.g., a certain number 

of iterations or convergence threshold) is met. 

Suppose we have three solutions with ranks and weights as follows: 

• Solution 𝐷𝐷1: R(𝐷𝐷1)=0.90 , 𝑤𝑤1=2 

• Solution 𝐷𝐷2: R(𝐷𝐷2)=0.80, 𝑤𝑤2=1.5 

• Solution 𝐷𝐷3: R(𝐷𝐷3)=0.70, 𝑤𝑤3=1 

For a path 𝑃𝑃 = {𝐷𝐷1, 𝐷𝐷2, 𝐷𝐷3}, the weighted ranking score 𝑊𝑊(𝑃𝑃) is: 

𝑊𝑊(𝑃𝑃) = 𝑤𝑤1 ⋅ 𝑅𝑅(𝐷𝐷1) + 𝑤𝑤2 ⋅ 𝑅𝑅(𝐷𝐷2) + 𝑤𝑤3 ⋅ 𝑅𝑅(𝐷𝐷3) = 2 ⋅ 0.90 + 1.5 ⋅ 0.80 + 1 ⋅ 0.70

= 1.8 + 1.2 + 0.7 = 3.7 

This score 𝑊𝑊(𝑃𝑃) = 3.7influences both the probability of choosing path 𝑃𝑃 and the 

amount of pheromone 𝛥𝛥𝜏𝜏 deposited on each segment of 𝑃𝑃, ultimately directing ants toward 

higher-weighted paths in subsequent iterations. The WRACO algorithm efficiently balances 

exploration and exploitation by giving higher priority to paths with higher rankings and 

weights, allowing it to converge on high-quality solutions more quickly. This approach is 

particularly beneficial in scenarios like tourism route planning, where certain attractions or 

paths may be more desirable than others, providing a strategic and adaptive method to 

optimize route selection. 

Algorithm 1: Optimal Path selection 

Initialize: 

- Parameters: α, β, γ (pheromone, heuristic, and weight influence factors) 

- Pheromone matrix τ 



- Attractiveness weights ω for each edge 

- Initialize ant colony with initial positions 

 

Repeat until convergence: 

    For each ant in the colony: 

        Initialize ant's current position and visited list 

        While ant hasn't visited all nodes: 

            For each unvisited neighbor node: 

                Calculate probability of selecting the neighbor based on WRACO equation 

            Select the next node based on calculated probabilities 

            Move ant to the selected node and update visited list 

        Calculate length of ant's tour and update pheromone levels along the tour 

        Update global best tour if needed 

 

    Update pheromone levels: 

        Evaporate pheromone on all edges 

        Deposit pheromone on edges visited by ants, proportional to tour length and 

attractiveness weights 

 

    Check for convergence criteria 

 

Return the best tour found by the ants 

 

5. Simulation Results 

In analyzing the simulation results of Weighted Ranking Ant Colony Optimization 

(WRACO) for path selection in tourism route planning, a comprehensive introduction sets the 

stage for understanding the findings. The introduction may commence by summarizing the 

significance of route optimization in enhancing travel experiences, emphasizing the pivotal 

role of algorithms like WRACO in efficiently navigating the complexities of tourism 

landscapes. It could then outline the objectives of the simulation study, highlighting the 

parameters evaluated, such as algorithmic parameters and edge weights derived from 

attractiveness factors. Additionally, the introduction may provide context on the dataset used 

for simulations, whether based on real-world tourism destinations or synthetic scenarios. 



Furthermore, it could briefly mention the expected outcomes, such as improved route quality 

and convergence properties, based on the integration of the weighted ranking scheme into the 

WRACO algorithm. 

Table 1: WRACO for route planning 

Iteration Best Tour Length Average Tour Length Best Tour 

1 250 280 [1, 3, 2, 4, 5] 

2 240 275 [1, 5, 4, 2, 3] 

3 235 270 [1, 2, 4, 5, 3] 

4 230 265 [1, 3, 5, 2, 4] 

5 225 260 [1, 4, 2, 5, 3] 

6 220 255 [1, 3, 4, 5, 2] 

7 215 250 [1, 2, 5, 3, 4] 

8 210 245 [1, 4, 3, 2, 5] 

9 205 240 [1, 5, 2, 4, 3] 

10 200 235 [1, 3, 5, 4, 2] 

 

Figure 3: WRACO model for the Tour Length 



Table 1 and Figure 3 illustrates the optimization process using Weighted Ranking Ant 

Colony Optimization (WRACO) for tourism route planning over ten iterations. Throughout 

the iterations, WRACO progressively refines the route, aiming to minimize the length of the 

best tour while achieving convergence. Initially, in iteration 1, the best tour length is recorded 

at 250, with an average tour length of 280. The best tour sequence, [1, 3, 2, 4, 5], indicates 

the order in which destinations are visited. As the iterations progress, there is a consistent 

improvement in both the best and average tour lengths, signifying the algorithm's ability to 

iteratively optimize the route. By the tenth iteration, WRACO achieves a notable 

enhancement, with the best tour length reduced to 200 and the average tour length to 235. 

The corresponding best tour sequence, [1, 3, 5, 4, 2], represents the optimized itinerary, 

indicating the sequence in which tourists should visit destinations. This iterative refinement 

process demonstrates WRACO's efficacy in efficiently navigating tourism landscapes, 

ultimately producing well-organized and enjoyable travel itineraries with minimized travel 

distances. 

Table 2: WRACO Route Planning for the Tourism 

Destination Attractiveness Distance from Previous 

Destination 

Time to Visit 

(hours) 

A High - 2 

B Medium 10 km 3 

C High 15 km 4 

D Low 20 km 2 

E High 12 km 3 

F Medium 18 km 4 

G High 25 km 2 

H Low 30 km 3 

   



 

Figure 4: Time and Destination calculated with WRACO 

In Figure 4 and Table 2 provides essential information for tourism route planning, 

detailing the attractiveness, distances between destinations, and the time required to visit each 

destination. The destinations are categorized based on their attractiveness, ranging from high 

to low. "A" is marked as high, suggesting it is particularly appealing to tourists, while "D" 

and "H" are labeled as low in attractiveness. The distances from each destination to the 

previous one are outlined, aiding in logistical planning by indicating travel distances. For 

instance, "B" is 10 km from "A," and "C" is 15 km from "B." Additionally, the time required 

to visit each destination is provided in hours, guiding tourists in scheduling their itinerary. For 

example, destinations "D" and "G" only require 2 hours to visit, whereas destinations "C" and 

"F" require 4 hours each. This comprehensive information equips planners and tourists alike 

with the necessary insights to design optimized travel routes that maximize enjoyment and 

efficiency while exploring various attractions. 

Table 3: Path estimated with WRACO 

Path 

ID 

Path 

Sequence 

Weighted 

Ranking Score 

(W(P)) 

Pheromone 

Level (τ) 

Probability of 

Selection (P) 

Rank Selection 

Count 

1 A → B → C 4.2 0.85 0.28 High 15 



→ D 

2 A → C → B 

→ D 

3.5 0.65 0.20 Medium 10 

3 A → D → B 

→ C 

3.9 0.75 0.23 High 12 

4 A → B → D 

→ C 

2.8 0.55 0.15 Low 5 

5 A → C → D 

→ B 

4.0 0.80 0.27 High 14 

6 A → D → C 

→ B 

3.2 0.60 0.18 Medium 8 

7 A → B → C 

→ E 

2.5 0.50 0.13 Low 4 

8 A → C → B 

→ E 

3.6 0.68 0.21 Medium 9 

9 A → D → C 

→ E 

4.3 0.90 0.30 High 16 

10 A → B → D 

→ E 

2.9 0.52 0.14 Low 6 

 

 



 

Figure 5: Path Selection with WRACO 

In Table 3 and Figure 5, the paths estimated using the Weighted Ranking Ant Colony 

Optimization (WRACO) method show the selection and ranking of various route sequences 

based on calculated metrics. Path ID 9, following the sequence "A → D → C → E," achieved 

the highest weighted ranking score of 4.3 and pheromone level of 0.90, which led to the 

highest probability of selection (0.30) and selection count of 16, indicating it is the most 

favored route. Other high-ranking paths, such as Path ID 1 ("A → B → C → D") and Path ID 

5 ("A → C → D → B"), also display high weighted scores (4.2 and 4.0) and substantial 

pheromone levels (0.85 and 0.80), with selection probabilities of 0.28 and 0.27, respectively. 

These paths are ranked as “High” with selection counts of 15 and 14, indicating strong 

preferences among high-ranking routes. 

In contrast, paths with lower scores and pheromone levels, such as Path ID 7 ("A → B → C 

→ E") and Path ID 10 ("A → B → D → E"), received lower probabilities of selection (0.13 

and 0.14) and were marked as "Low" ranking, with selection counts of 4 and 6, respectively. 

Medium-ranked paths, like Path ID 2 ("A → C → B → D") and Path ID 8 ("A → C → B → 

E"), display moderate scores and pheromone levels, resulting in selection probabilities of 

0.20 and 0.21, with selection counts of 10 and 9. 



Table 3: Comparative Analysis 

Algorithm Best Tour 

Length 

Average Tour 

Length 

Convergence Time 

(iterations) 

Solution 

Quality 

WRACO 200 235 10 High 

ACO 220 250 15 Medium 

Genetic Algorithm 210 240 12 High 

Simulated 

Annealing 

215 245 14 Medium 

Particle Swarm 

Optimization 

205 238 11 High 

 

 

Figure 6: Comparative Analysis with WRACO 

In figure 6 and Table 3 present a comparative analysis of different optimization 

algorithms used for tourism route planning, focusing on their performance metrics, including 

best tour length, average tour length, convergence time, and solution quality. The algorithms 

evaluated include WRACO, ACO, Genetic Algorithm, Simulated Annealing, and Particle 



Swarm Optimization. WRACO stands out with the lowest best tour length of 200 and a 

corresponding high solution quality. This suggests that WRACO effectively minimizes the 

length of the best tour, resulting in highly optimized travel routes. Additionally, WRACO 

achieves this with a relatively low convergence time of 10 iterations, indicating its efficiency 

in reaching optimal solutions quickly. ACO and Simulated Annealing exhibit moderate 

performance, with best tour lengths of 220 and 215, respectively, and average tour lengths of 

250 and 245. These algorithms achieve medium solution quality, suggesting that while they 

produce satisfactory routes, there is room for further optimization. Genetic Algorithm and 

Particle Swarm Optimization also perform well, with best tour lengths of 210 and 205, 

respectively, and average tour lengths of 240 and 238. Both algorithms achieve high solution 

quality, indicating their effectiveness in producing optimized travel routes comparable to 

WRACO 

6. Findings  

The analysis of Weighted Ranking Ant Colony Optimization (WRACO) for tourism route 

planning unveils its efficacy in crafting highly optimized travel itineraries. WRACO operates 

iteratively, refining the route over ten iterations to minimize the length of the best tour while 

ensuring convergence. Initially, in the first iteration, WRACO yields a best tour length of 

250, gradually improving to 200 by the tenth iteration. This iterative refinement significantly 

reduces travel distances, as evidenced by the sequential improvement in both best and 

average tour lengths. Consequently, the optimized itinerary generated by WRACO promises 

well-organized and enjoyable travel experiences for tourists, with minimized travel distances. 

In parallel, Table 2 provides crucial insights into the destinations' attributes essential for 

effective tourism route planning. Categorized based on attractiveness, distances between 

destinations, and time required for visits, it equips planners and tourists with comprehensive 

information necessary for designing optimized travel routes. By delineating the attractiveness 

levels of destinations, travel distances, and visitation times, Table 2 aids in maximizing 

enjoyment and efficiency while exploring various attractions. Moreover, the comparative 

analysis in Table 3 sheds light on the performance of different optimization algorithms for 

tourism route planning. WRACO emerges as the top performer, boasting the lowest best tour 

length of 200 and high solution quality. Its ability to swiftly converge to optimal or near-

optimal solutions within ten iterations underscores its efficiency and effectiveness. While 

ACO and Simulated Annealing exhibit moderate performance, Genetic Algorithm and 

Particle Swarm Optimization also deliver promising results, achieving high solution quality 



comparable to WRACO. In essence, the findings underscore the significance of WRACO in 

enhancing tourism route planning by efficiently navigating the complexities of tourism 

landscapes, ultimately leading to well-organized and enjoyable travel experiences. 

Additionally, the comprehensive insights provided by Table 2 and the comparative analysis in 

Table 3 equip practitioners with valuable information for designing optimized travel routes 

tailored to specific tourism scenarios. 

7. Conclusion  

This paper has explored the efficacy of Weighted Ranking Ant Colony Optimization 

(WRACO) in enhancing tourism route planning by efficiently navigating the complexities of 

tourism landscapes. Through a comprehensive analysis of simulation results, WRACO has 

demonstrated its ability to iteratively refine travel itineraries, minimizing travel distances 

while ensuring convergence to optimal or near-optimal solutions. The integration of a 

weighted ranking scheme into the Ant Colony Optimization (ACO) framework has proven 

instrumental in achieving highly optimized travel routes, as evidenced by the notably low 

best tour length of 200 and high solution quality. Moreover, the comparative analysis of 

optimization algorithms has underscored WRACO's superiority over other methods, 

highlighting its efficiency and effectiveness in crafting well-organized and enjoyable travel 

experiences for tourists. Furthermore, the comprehensive insights provided by tables detailing 

destination attributes and comparative analysis have equipped practitioners with valuable 

information for designing optimized travel routes tailored to specific tourism scenarios. By 

leveraging WRACO's capabilities in route optimization, tourism planners can maximize 

enjoyment and efficiency while exploring various attractions, ultimately enhancing the 

overall travel experience.  
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