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Abstract: This work presents a new deep learning architecture specifically designed to 
extract and structure climbing features in indoor settings. By building on two neural models, 
one pair wise similarity and one triplet comparison, the approach is learned to discriminate 
between climbing holds belonging to the same route and those that do not. In contrast with 
more conventional color clustering methods, our method is superior in accuracy and 
robustness, albeit with the requirements of complex manual annotation and higher 
computational demands. The findings emphasize the promise of deep neural networks to 
transform automated route mapping within climbing environments. 

Keywords: neural models, conventional color clustering methods, accuracy, robustness, deep 
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1 Introduction 

Indoor climbing has experienced a significant surge in popu- larity, particularly after its debut 
at the Tokyo 2020 Olympics. This increased interest has spurred a range of technological 
innovations in climbing analysis and management. In partic- ular, computer vision techniques 
that focus on segmenting climbing holds and identifying routes have become integral in both 
commercial gyms and competitive events. 

A. Applications in Climbing Analysis 

Several practical applications emerge from advanced image processing in climbing facilities: 

• Competition Evaluation – Real-time pose tracking sys- tems can monitor climber 
performance by recording attempts and successful completions, reducing the depen- 
dency on large judging teams. 

• Climber Log Systems – After route modifications, fa- cilities can capture images that 
feed into mobile or web applications. These platforms enable climbers to record 
ascents, provide feedback through likes or comments, and propose difficulty ratings, 
akin to existing solutions for standardized boards such as Kilterboard (1) and 
Moonboard (2). 

• Difficulty Assessment – Techniques to automatically predict the challenge level of a 
route using established grading standards. 
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Beyond these targeted uses, any vision-based system de- signed for indoor climbing must 
accurately delineate the segments of an image (or textures in 3D models) that corre- spond to 
climbing holds and determine how these holds form coherent routes. 

Prior investigations have addressed some of these chal- lenges. For example, one study 
employed machine learning to predict the difficulty of a standardized training board (3) while 
another focused on post-climb analysis for performance evaluation in commercial gyms (4). 
Additional work has examined hold segmentation through both conventional and learning-
based approaches (5; 6); however, many of these models and datasets remain restricted in 
accessibility. 

2 Method 

Climbing walls are outfitted with holds and volumes that vary in shape, size, and color. 
Typically, a single climbing route is defined by holds sharing a common color, with the 
initial and final holds highlighted by distinctive tape. The volumes—large fixtures integrated 
into the wall—are designed for multiple uses across different routes, though their 
arrangement may vary with each setting to avoid repetitive patterns. 

 
A. Problem Formulation 

 
Under these assumptions, the challenge of hold segmentation is defined as follows: Given a 
2D RGB image, generate two sets of non-overlapping polygons that pinpoint the locations of 
holds and volumes. (Note: For simplicity, holds mounted in a stacked arrangement are treated 
as a single structure.) 

Similarly, the task of route segmentation is described by the following formulation: Given a 
collection of hold images (obtained through segmentation), identify clusters of holds that 
represent distinct climbing routes. Since volumes are universally present across routes, they 
are excluded from this grouping process, thereby simplifying the segmentation task. 
Although certain gyms may allocate volumes to specific routes, the prevailing approach treats 
them as a common feature. 

 
B. Acquisition of Data 

 
Datasets for training and evaluation were compiled from images taken at two distinct 
climbing facilities—one located in the Czech Republic (Sm´ıchoff) and the other in 
Heidelberg (Boulderhaus). To assess performance across varying image qualities, both a 
high-end DSLR camera and a modern smart- phone were utilized. Table I summarizes the 
key parameters of the dataset. 

Capturing images from multiple gyms is crucial, as variations in hold manufacturing and wall 
backgrounds (e.g., dark) 

TABLE I: Summary of dataset parameters 



Location Device Images Annotated 
Boulderhaus Nikon Z 50 1062 15 hold (8 route) 
Boulderhaus Samsung A51 244 2 hold (0 route) 
Sm´ıchoff Nikon Z 50 972 2 hold (0 route) 

 
 
 

 

 

 

 

Fig. 1. Sm´ıchoff facility 

 

 

 

 

 

 

 

Fig. 2. Boulderhaus facility 

Fig. 3. Comparison of different climbing facilities 

A subset of the collected images was manually annotated using the VGG Image Annotator 
(VIA) (7; 8). This process accounted for varying numbers and dimensions of holds and 
volumes, diverse lighting conditions, multiple perspectives, and assorted backgrounds. Each 
hold was delineated with a polygon and classified as either a hold or a volume, with holds 
that belonged to the same climbing route receiving a common route identifier. 

C. Annotation Statistics 
Across the collected datasets, a total of 1688 regions were manually delineated, with 1597 
corresponding to climbing holds and 91 to wall volumes. The relative sizes of these 
annotations (as a percentage of the total image area) and the frequency per image are 
illustrated in Figure 4 and Figure 5, respectively 

 



 

 

 

Fig. 4. Relative size of holds as a percentage of the image area 

 

 

 

 

 

 

 

Fig. 5. Count of hold and volume instances per category 

The entire dataset, comprising both the images and corresponding annotations, is distributed 
freely under the CC NC- SA 4.0 license via Kaggle (9). 

D. Hold Segmentation 
1) Conventional Technique 

In a classical approach, two primary features are utilized to identify a hold: its edges and 
color. These attributes, however, are not unique to holds and may describe other elements 
within the scene, which introduces ambiguity in discerning object semantics. 

The conventional method was executed using Python and OpenCV (10), drawing 
inspiration from (4). This strategy enhances basic blob and edge detection by incorporating 
hold- specific heuristics and integrating both approaches into a unified process 

a) Edge Extraction. 

The Canny edge detector, with hysteresis thresholds set at 20 and 25, is applied to a 
Gaussian-blurred version of the image to suppress noise. Unwanted edges—such as those 
from bolt holes—are eliminated by filtering based on minimum area coverage. 
Additionally, a straightness filter, implemented via linear regression on edge coordinates 
and thresholding the average squared distance, is used to remove linear artifacts such as 
wall seams. Sample outcomes of this process are depicted in Figure 9. 

 

 



 

 

 

Fig. 6. Canny edge extraction 

 

Fig. 7. Area-based filtering 

 

 

 

 

 

 

 

Fig. 8. Straightness-based filtering 

Fig. 9. Results from the edge detection process. 

b) Blob Detection. 

A simple blob detector is employed with an area filter. The method converts the image to 
binary across a range of bright- ness thresholds (minimum 1, maximum 200, with 
increments of 10), identifies connected components to determine centers, and groups nearby 
centers into unified blobs. Blobs exhibiting more than a 15% overlap are merged, a 
necessary step to handle dual-texture holds where chalk creates a visual split. An example 
of blob detection is shown in Figure 10. 



 

Fig. 10. Result of the blob detection procedure. 

c) Fusion of Techniques 

The two methods are combined by using the blobs as initial indicators of hold positions, 
while the edges serve as guides for defining their boundaries. To refine these boundaries 
into precise masks, binary thresholding is applied to the RGB channels at incremental steps. 
The Canny detector then reprocesses these thresholds, selecting the contour that best 
approximates the original outline based on a metric (for instance, the squared distance 
between corresponding contour points). A sample output of this combined strategy is 
provided in Figure 11. 

 

Fig. 11. Result of the combined hold segmentation method 

A significant limitation of this traditional approach is its sensitivity to parameter variations. 
Optimal settings for edge and blob detection differ from one image to another. Parameter 
estimation can be automated using heuristic functions (e.g., determining minimum areas via 
histogram spikes of contour sizes), yet this may fail on datasets lacking common features 
such as bolt holes, particularly in images from competitive settings 

2) Learning-Based Technique 



a) Overview. 

A learning-based strategy employs the Mask R-CNN ar- chitecture (11), implemented via 
the detectron2 library (12). This approach leverages pretrained weights from the COCO 
dataset (13), which are then fine-tuned for the specialized task of climbing hold 
segmentation. 

b) Data Augmentation and Training. 

Given the limited size of the dataset, extensive data aug- mentation is performed. 
Operations include random cropping to half the original height and width, resizing such that 
the shortest edge measures 640 pixels, random horizontal flipping, and minor random 
adjustments to rotation, brightness, contrast, and saturation. The dataset is partitioned into 
80% for training and 20% for testing. Multiple model variations were trained on a GTX 
1060 6GB for 1000 iterations with a learning rate of ϵ = 0.0006, using the default 
configuration of the mask_rcnn_R_50_FPN_3x model 

c) Optimization for Small Objects. 

Due to the small size and high count of objects in each image, modifications were 
necessary. Initially, the number of proposals from the Region Proposal Network (RPN) was 
dou- bled (from 12,000 to 24,000 pre-NMS and from 2000 to 4000 post-NMS) to capture 
more instances. Further adjustments included limiting the model to utilize only P2 (features 
at 1/4 scale) and P3 (features at 1/8 scale) from the Feature Pyramid Network (FPN) to 
enhance detection of small objects. 

d) Evaluation Metrics. 

For assessment, the maximum detections per image were increased to 300. The evaluation 
metric employed is the Intersection over Union (IoU) between the predicted mask (maskp) 
and the ground truth mask (maskgt): 

 

A detection is deemed correct if the IoU exceeds a threshold t and the class prediction is 
accurate; otherwise, it is marked as a false positive. The average precision (AP) is derived 
from the area under the precision-recall curve for each class, and the mean average 
precision (mAP) is calculated as 

 

This computation is repeated over multiple IoU thresholds t ∈ 

{0.50, 0.55, . . . , 0.95}, consistent with the COCO evaluation protocol. 

e) Results. 



Due to the limited number of volume instances, emphasis is placed on the AP for holds. 
Among the various configurations, the Augmented-P2P3-DoubleTopK-NMS-2K variant 
achieved the highest AP on both the Boulderhaus and Sm´ıchoff datasets (65.99 and 63.67, 
respectively). On the Boulderhaus- Phone dataset, the Augmented-DoubleTopK-NMS 
variant outperformed others with an AP of 81.23. The improved performance on the phone 
dataset is attributed to the larger apparent size of holds, facilitating easier segmentation. A 
representative comparison of the segmentation results is displayed in Figure 14. 

 

Fig. 12. Sm´ıchoff facility 

 

Fig. 13. Boulderhaus facility (camera) 
Fig 14. comparison of the segmentation results  

 



TABLE II: SUMMARY OF MODEL VARIATIONS EXPLORED FOR HOLD DETECTION. 

Basic Default configuration without any augmentations. 
Augmented Includes a suite of augmentation techniques. 
Augmented-
NoRandomCrop 

Augmentations applied, excluding random cropping. 
 

Augmented-
DoubleTopK-NMS 

Augmentations applied with a doubled count of top-k 
proposals pre- and post-NMS. 

Augmented-P2P3 Augmentations with ROI and segmentation heads utilizing 
only P2 and P3 features. 

Augmented-P2P3-
DoubleTopK-NMS 

Combines P2/P3 feature utilization with a doubled top-k 
proposal count. 

Augmented-P2P3-
DoubleTopK-NMS-2K   

Same as the previous model, but trained for 2000 iterations. 

f) Model Descriptions. 

A variety of model configurations were explored, as summa- rized in Table II. These 
configurations differ in augmentation strategies, the inclusion or exclusion of random 
cropping, adjustments in the number of top-k results in non-maximum suppression (NMS), 
and modifications in the feature layers used by the region-of-interest (ROI) and 
segmentation heads 

E. Route Segmentation 
 

1) Conventional Methodology 
 

After the identification and annotation of climbing holds, the next step is to assemble routes 
based on holds sharing similar color properties. This traditional method employs OpenCV 

(10) alongside k-means and k-medoids clustering available in the scikit-learn toolkit (14) 
using various feature representa- tions. Due to the similar mechanics behind these clustering 
algorithms, the outcomes tend to be alike. 

a) Mean RGB Feature Clustering. 

One approach involves computing the average RGB val- ues for each hold (15). In bright 
and clear images—where shadows and chalk artifacts are minimal—this method clusters 
holds with comparable colors into distinct routes. Figure 15 illustrates a scenario where ten 
out of twelve red holds were correctly grouped, although there can be misclassifications 
when clusters inadvertently merge holds from separate routes (see Figure 16). 

 



Fig. 15. Clustering based on mean RGB values: a red route example. 

 

Fig. 16. Clustering based on mean RGB values resulting in an incorrect grouping. 

b) Color Moment Features. 

An alternative feature set employs color moments, which encapsulate the color distribution 
of each hold much like central moments describe probability distributions. Although this 
method tends to reduce false positives, it may incorrectly split holds of identical colors 
across multiple clusters, as depicted in Figure 17. 

 

Fig. 17. Clustering using color moments, resulting in multiple red route groupings 

c) Histogram-Based Features. 

Additionally, histograms computed via OpenCV’s calcHist function on the RGB channels 
were tested. Contrary to expectations, this method tended to aggregate most holds into a 
single cluster, leaving other clusters sparsely populated, as shown in Figure 18. 



 

Fig. 18. Histogram-based clustering resulting in one dominant cluster. 

 

Fig. 19. Example of a Siamese network used for comparing hold images from different 
routes 

 

Fig. 20. Visualization of triplet loss 

 

Fig. 21. Illustration of the triplet network, where anchors and positive samples belong to the 
same route while negatives come from a different route 



 
Fig. 22. Siamese network producing a small cluster 

 
Fig. 23. Triplet network combining light and dark green holds 

 
Fig. 24. Triplet network merging holds with subtle color variations 

 

Fig. 25. Triplet network clustering black/gray holds. 

Fig. 26. Clustering results for route segmentation using the Siamese and Triplet network 
approaches (tmed = 0.7, tmax = 2.65) 

2) Learning-Based Strategy 

a) Reframing the Problem. 

Identifying routes on a climbing wall can be recast as a similarity assessment challenge. 
Instead of treating the task as a straightforward classification based solely on color—a 
method that fails when colors vary between gyms or holds exhibit multiple hues—the focus 
shifts to determining whether two hold images belong to the same category based on their 
visual characteristics. 



b) Siamese Network Implementation. 

The first network architecture adopts a Siamese configuration (16), which utilizes two 
parallel pretrained ResNet50 (17) branches with shared weights. The final classification 
layer is removed, and the outputs from the last layers are concatenated and fed through 
several fully connected layers, culminating in a single neuron output that is squashed to 
the range [0, 1] via a Sigmoid activation function. Figure 19 displays an example of the 
network structure used to compare pairs of holds. 

The network is optimized using binary cross-entropy loss with the AdamW optimizer 
(18). Initially, the network is trained for 100 epochs at a learning rate of ϵ = 0.001, while 
keeping the weights of the ResNet backbone fixed. Subsequently, the backbone is 
unfrozen and fine-tuned for an additional 100 epochs at a lower learning rate of ϵ = 
0.00001. Sampling is conducted by randomly selecting an annotated image and then 
choosing holds from the same or different routes, ensuring that holds are not 
inadvertently mixed with similar-colored holds from other routes. 

c) Triplet Network Approach. 

A second network design is inspired by FaceNet (19). This approach embeds hold 
images into a d-dimensional space (with d = 256) while normalizing the embeddings 
such that  f (x)  2 = 1. The triplet loss function is minimized to enforce that the 
Euclidean distance between an anchor and a positive sample (from the same route) is 
smaller than that between the anchor and a negative sample (from a different route) by at 
least a margin α, as described by 

 
where ai, pi, and ni represent the embeddings of the anchor, positive, and negative 

samples, respectively. A visualization of this loss mechanism is presented in Figure 20. 
In a manner similar to the Siamese network, the triplet-based model is trained with the 

same hyperparameters. Sampling involves choosing two holds from a common route 
(anchor and positive) and one hold from a distinct route (negative). Triplet mining is 
applied to focus on challenging examples, although this refinement yielded only 
incremental benefits. Figure 21 illustrates the overall architecture of the triplet network. 

 
d) Augmentation and Evaluation. 

Heavy use of data augmentation (random rotations, horizon- tal and vertical flips, and 
color adjustments) is crucial given the limited number of annotated training images. For 
evaluation, the Siamese network is assessed by measuring the accuracy in determining 
whether pairs of holds belong to the same route. Meanwhile, the triplet network’s 
performance is gauged by counting the proportion of triplets that satisfy the constraint ai 
− pi  2 <  ai − ni  2. Table III summarizes the accuracy metrics for both approaches 

 
TABLE III: Accuracy in determining whether two hold images belong to the same route. 

Model Accuracy 



Siamese Network 66.95% 
Triplet Network 81.74% 

 
e) Route Formation Algorithm. 

Routes are constructed by initializing a cluster with a randomly selected hold and then 
iteratively comparing each unassigned hold against holds in existing routes. If the median 
distance between the candidate hold and all holds in a route is below a threshold tmed, and 
the maximum distance does not exceed tmax, the hold is appended to that route. If no 
matching route is found, a new route is initiated. The resultant clusters are visualized in 
Figure 26, which demonstrates differences in clustering behavior between the Siamese and 
Triplet models. Notably, the Siamese network often produces smaller, more homogeneous 
clusters, while the triplet network tends to generate larger clusters that may inadvertently 
merge holds of similar hues across routes 

 
3 Findings 

A. Hold Segmentation 
Conventional hold segmentation delivers acceptable outcomes only when the 

parameters are meticulously calibrated for each specific dataset. This approach, although 
free from the burden of extensive manual annotation required by learning- based methods, 
suffers from the limitation of having to adjust parameters for each new background or hold 
color variation, often resulting in suboptimal segmentation performance. 

In contrast, the learning-based strategy for hold segmentation exhibits markedly 
superior accuracy and robustness. This method, despite necessitating a manually annotated 
dataset, specialized hardware (e.g., a CUDA-enabled GPU), and longer training durations, 
consistently outperforms traditional tech- niques. The increased precision of the deep 
learning frame- work suggests that the higher resource investment is justified by the 
significant improvements in detection and delineation of holds. 

 
B. Route Segmentation 

The conventional route segmentation method relies on pre- defined clustering 
parameters, including the predetermined number of clusters, which must be set in advance. 
Among the various techniques experimented with, mean color clustering emerged as the 
most effective when handling holds with uniform colors under controlled lighting 
conditions. However, the conventional methods can struggle when faced with over- lapping 
routes or inconsistent color distributions. 

The machine learning-based approach, leveraging similarity metrics through Siamese 
and triplet network architectures shows only a modest improvement over traditional 
clustering methods. Despite the slight edge in performance, there is clear potential for 
further enhancement by expanding the annotated dataset and extending the training period. 
Additionally, integrating the spatial context of the entire image—beyond the individual 
hold—may offer a more nuanced determination of route membership, further refining the 
accuracy of route segmentation. 



4 Conclusion 
Both conventional and deep learning-based methodologies were implemented for the 

dual tasks of hold and route segmentation in indoor climbing environments. For hold 
segmentation, the traditional technique capitalizes on blob detection for pinpointing hold 
locations and edge detection for outlining their contours, implemented using OpenCV (10). 
In contrast, the deep learning approach utilizes the detectron2 implementation of Mask R-
CNN (11), which was specifically fine-tuned to address the nuances of climbing hold 
detection. 

Regarding route segmentation, a conventional strategy based on clustering algorithms 
provided baseline results by grouping holds using features such as mean colors, histograms, 
and color moments, all processed with tools from OpenCV (10) and scikit-learn (14). The 
learning-based method, on the other hand, applies a ResNet-based model to generate feature 
embeddings, ensuring that holds from the same route exhibit minimal L2 distances in the 
embedding space. Although the improvement in route segmentation accuracy was 
incremental, it underscores the potential of deep learning methods in capturing subtle visual 
similarities between holds. 

The comparative analysis reveals that while both tasks benefit from deep learning 
approaches, the tradeoff involves increased demands in terms of manual dataset annotation 
and computational resources. Nevertheless, the significant improvements in segmentation 
accuracy justify these investments. The detailed experiments indicate that refining network 
parameters, expanding the dataset, and incorporating full- image spatial context may further 
enhance performance. 
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