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1. INTRODUCTION

Indoor climbing has experienced a significant surge in popu- 
larity, particularly after its debut at the Tokyo 2020 Olympics. 
This increased interest has spurred a range of technological 
innovations in climbing analysis and management. In partic- 
ular, computer vision techniques that focus on segmenting 
climbing holds and identifying routes have become integral 
in both commercial gyms and competitive events.

1.1 APPLICATIONS IN CLIMBING ANALYSIS

Several practical applications emerge from advanced 
image processing in climbing facilities:

• Competition Evaluation – Real-time pose tracking 
sys- tems can monitor climber performance by 
recording attempts and successful completions, 
reducing the depen- dency on large judging teams.

• Climber Log Systems – After route modifications, 
fa- cilities can capture images that feed into mobile 
or web applications. These platforms enable climbers 
to record ascents, provide feedback through likes 
or comments, and propose difficulty ratings, akin to 
existing solutions for standardized boards such as 
Kilterboard (1) and Moonboard (2).

• Difficulty Assessment – Techniques to automatically 
predict the challenge level of a route using established 
grading standards.

Beyond these targeted uses, any vision-based system 
de- signed for indoor climbing must accurately delineate 
the segments of an image (or textures in 3D models) that 
corre- spond to climbing holds and determine how these 
holds form coherent routes.

Prior investigations have addressed some of these chal- 
lenges. For example, one study employed machine learning 
to predict the difficulty of a standardized training board (3) 
while another focused on post-climb analysis for performance 
evaluation in commercial gyms (4). Additional work has 
examined hold segmentation through both conventional and 
learning-based approaches (5, 6); however, many of these 
models and datasets remain restricted in accessibility.

2. METHOD

Climbing walls are outfitted with holds and volumes that 
vary in shape, size, and color. Typically, a single climbing 
route is defined by holds sharing a common color, with 
the initial and final holds highlighted by distinctive tape. 
The volumes—large fixtures integrated into the wall—are 
designed for multiple uses across different routes, though 
their arrangement may vary with each setting to avoid 
repetitive patterns.

2.1 PROBLEM FORMULATION

Under these assumptions, the challenge of hold 
segmentation is defined as follows: Given a 2D RGB 
image, generate two sets of non-overlapping polygons that 
pinpoint the locations of holds and volumes. (Note: For 
simplicity, holds mounted in a stacked arrangement are 
treated as a single structure).

Similarly, the task of route segmentation is described by 
the following formulation: Given a collection of hold 
images (obtained through segmentation), identify clusters 
of holds that represent distinct climbing routes. Since 
volumes are universally present across routes, they are 
excluded from this grouping process, thereby simplifying 
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the segmentation task. Although certain gyms may allocate 
volumes to specific routes, the prevailing approach treats 
them as a common feature.

2.2 ACQUISITION OF DATA

Datasets for training and evaluation were compiled from 
images taken at two distinct climbing facilities—one 
located in the Czech Republic (Sm´ıchoff) and the other in 
Heidelberg (Boulderhaus). To assess performance across 
varying image qualities, both a high-end DSLR camera and 
a modern smart-phone were utilized. Table I summarizes 
the key parameters of the dataset.

Capturing images from multiple gyms is crucial, as 
variations in hold manufacturing and wall backgrounds 
(e.g., dark).

A subset of the collected images was manually annotated 
using the VGG Image Annotator (VIA) (7; 8). This 
process accounted for varying numbers and dimensions 
of holds and volumes, diverse lighting conditions, 
multiple perspectives, and assorted backgrounds. Each 
hold was delineated with a polygon and classified as 
either a hold or a volume, with holds that belonged 
to the same climbing route receiving a common route 
identifier.

2.3 ANNOTATION STATISTICS

Across the collected datasets, a total of 1688 regions were 
manually delineated, with 1597 corresponding to climbing 
holds and 91 to wall volumes. The relative sizes of these 
annotations (as a percentage of the total image area) and 
the frequency per image are illustrated in Figure 4 and 
Figure 5, respectively.

The entire dataset, comprising both the images and 
corresponding annotations, is distributed freely under the 
CC NC- SA 4.0 license via Kaggle (9).

Table I. Summary of dataset parameters
Location Device Images Annotated

Boulderhaus Nikon Z 50 1062 15 hold (8 route)

Boulderhaus Samsung A51 244 2 hold (0 route)

Sm´ıchoff Nikon Z 50 972 2 hold (0 route)

Figure 1. Sm´ıchoff facility.

Figure 2. Boulderhaus facility.

Figure 3. Comparison of different climbing facilities.

Figure 4. Relative size of holds as a percentage of the 
image area.
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2.4 HOLD SEGMENTATION

2.4.1 Conventional Technique

In a classical approach, two primary features are utilized 
to identify a hold: its edges and color. These attributes, 
however, are not unique to holds and may describe other 

elements within the scene, which introduces ambiguity in 
discerning object semantics.

The conventional method was executed using Python and 
OpenCV (10), drawing inspiration from (4). This strategy 
enhances basic blob and edge detection by incorporating 
hold-specific heuristics and integrating both approaches 
into a unified process.

2.4.1.1 Edge extraction

The Canny edge detector, with hysteresis thresholds set 
at 20 and 25, is applied to a Gaussian-blurred version 
of the image to suppress noise. Unwanted edges—such 
as those from bolt holes—are eliminated by filtering 
based on minimum area coverage. Additionally, a 
straightness filter, implemented via linear regression on 
edge coordinates and thresholding the average squared 
distance, is used to remove linear artifacts such as wall 
seams. Sample outcomes of this process are depicted in 
Figure 9.

Figure 5. Count of hold and volume instances per category.

Figure 6. Canny edge extraction.

Figure 7. Area-based filtering.

Figure 8. Straightness-based filtering.

Figure 9. Results from the edge detection process.
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2.4.1.2 Blob detection

A simple blob detector is employed with an area filter. The 
method converts the image to binary across a range of bright- 
ness thresholds (minimum 1, maximum 200, with increments 
of 10), identifies connected components to determine centers, 
and groups nearby centers into unified blobs. Blobs exhibiting 
more than a 15% overlap are merged, a necessary step to 
handle dual-texture holds where chalk creates a visual split. 
An example of blob detection is shown in Figure 10.

2.4.1.3 Fusion of techniques

The two methods are combined by using the blobs as initial 
indicators of hold positions, while the edges serve as guides 
for defining their boundaries. To refine these boundaries 
into precise masks, binary thresholding is applied to the 
RGB channels at incremental steps. The Canny detector 
then reprocesses these thresholds, selecting the contour that 
best approximates the original outline based on a metric 
(for instance, the squared distance between corresponding 
contour points). A sample output of this combined strategy 
is provided in Figure 11.

A significant limitation of this traditional approach is its 
sensitivity to parameter variations. Optimal settings for 
edge and blob detection differ from one image to another. 
Parameter estimation can be automated using heuristic 
functions (e.g., determining minimum areas via histogram 
spikes of contour sizes), yet this may fail on datasets 
lacking common features such as bolt holes, particularly in 
images from competitive settings.

2.4.2 Learning-Based Technique

2.4.2.1 Overview

A learning-based strategy employs the Mask R-CNN ar- 
chitecture (11), implemented via the detectron2 library 
(12). This approach leverages pretrained weights from 
the COCO dataset (13), which are then fine-tuned for the 
specialized task of climbing hold segmentation.

2.4.2.2 Data augmentation and training

Given the limited size of the dataset, extensive data 
aug- mentation is performed. Operations include random 
cropping to half the original height and width, resizing 
such that the shortest edge measures 640 pixels, random 
horizontal flipping, and minor random adjustments to 
rotation, brightness, contrast, and saturation. The dataset 
is partitioned into 80% for training and 20% for testing. 
Multiple model variations were trained on a GTX 1060 
6GB for 1000 iterations with a learning rate of ϵ = 0.0006, 
using the default configuration of the mask_rcnn_R_50_
FPN_3x model.

2.4.2.3 Optimization for small objects

Due to the small size and high count of objects in each 
image, modifications were necessary. Initially, the number 
of proposals from the Region Proposal Network (RPN) 
was dou- bled (from 12,000 to 24,000 pre-NMS and from 
2000 to 4000 post-NMS) to capture more instances. Further 
adjustments included limiting the model to utilize only P2 
(features at 1/4 scale) and P3 (features at 1/8 scale) from 
the Feature Pyramid Network (FPN) to enhance detection 
of small objects.

2.4.2.4 Evaluation metrics

For assessment, the maximum detections per image were 
increased to 300. The evaluation metric employed is the 
Intersection over Union (IoU) between the predicted mask 
(maskp) and the ground truth mask (maskgt):

  

A detection is deemed correct if the IoU exceeds a 
threshold t and the class prediction is accurate; otherwise, 
it is marked as a false positive. The average precision (AP) 

Figure 10. Result of the blob detection procedure.

Figure 11. Result of the combined hold segmentation 
method.
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is derived from the area under the precision-recall curve 
for each class, and the mean average precision (mAP) is 
calculated as

  

This computation is repeated over multiple IoU thresholds 
t.

{0.50, 0.55, . . . , 0.95}, consistent with the COCO 
evaluation protocol.

2.4.2.5 Results

Due to the limited number of volume instances, emphasis 
is placed on the AP for holds. Among the various 
configurations, the Augmented-P2P3-DoubleTopK-
NMS-2K variant achieved the highest AP on both the 
Boulderhaus and Sm´ıchoff datasets (65.99 and 63.67, 
respectively). On the Boulderhaus-Phone dataset, the 
Augmented-DoubleTopK-NMS variant outperformed 

others with an AP of 81.23. The improved performance on 
the phone dataset is attributed to the larger apparent size 
of holds, facilitating easier segmentation. A representative 
comparison of the segmentation results is displayed in 
Figure 14.

2.4.2.6 Model descriptions

A variety of model configurations were explored, as 
summarized in Table II. These configurations differ in 
augmentation strategies, the inclusion or exclusion of 
random cropping, adjustments in the number of top-k 
results in non-maximum suppression (NMS), and 
modifications in the feature layers used by the region-of-
interest (ROI) and segmentation heads.

Figure 12. Sm´ıchoff facility.

Figure 13. Boulderhaus facility (camera).

Figure 14. comparison of the segmentation results.

Table 2. Summary of model variations explored for hold 
detection

Basic Default configuration without any 
augmentations.

Augmented Includes a suite of augmentation 
techniques.

Augmented-NoRan-
domCrop

Augmentations applied, excluding 
random cropping.

Augmented-Double-
TopK-NMS

Augmentations applied with a dou-
bled count of top-k proposals pre- and 
post-NMS.

Augmented-P2P3 Augmentations with ROI and seg-
mentation heads utilizing only P2 and 
P3 features.

Augment-
ed-P2P3-Double-
TopK-NMS

Combines P2/P3 feature utilization 
with a doubled top-k proposal count.

Augment-
ed-P2P3-Double-
TopK-NMS-2K 

Same as the previous model, but 
trained for 2000 iterations.
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2.5 ROUTE SEGMENTATION

2.5.1 Conventional Methodology

After the identification and annotation of climbing holds, 
the next step is to assemble routes based on holds sharing 
similar color properties. This traditional method employs 
OpenCV (10) alongside k-means and k-medoids clustering 
available in the scikit-learn toolkit (14) using various 
feature representations. Due to the similar mechanics 
behind these clustering algorithms, the outcomes tend to 
be alike.

2.5.1.1 Mean RGB feature clustering

One approach involves computing the average RGB 
val- ues for each hold (15). In bright and clear images—
where shadows and chalk artifacts are minimal—this 
method clusters holds with comparable colors into 
distinct routes. Figure 15 illustrates a scenario where 
ten out of twelve red holds were correctly grouped, 
although there can be misclassifications when clusters 
inadvertently merge holds from separate routes (see 
Figure 16).

2.5.1.2 Color moment features

An alternative feature set employs color moments, which 
encapsulate the color distribution of each hold much 
like central moments describe probability distributions. 
Although this method tends to reduce false positives, 
it may incorrectly split holds of identical colors across 
multiple clusters, as depicted in Figure 17.

2.5.1.3 Histogram-based features

Additionally, histograms computed via OpenCV’s calcHist 
function on the RGB channels were tested. Contrary 
to expectations, this method tended to aggregate most 
holds into a single cluster, leaving other clusters sparsely 
populated, as shown in Figure 18.

2.5.2 Learning-Based Strategy

2.5.2.1 Reframing the problem

Identifying routes on a climbing wall can be recast as a 
similarity assessment challenge. Instead of treating the 
task as a straightforward classification based solely on 
color—a method that fails when colors vary between 
gyms or holds exhibit multiple hues—the focus shifts to 
determining whether two hold images belong to the same 
category based on their visual characteristics.

Figure 15. Clustering based on mean RGB values: a red 
route example.

Figure 16. Clustering based on mean RGB values 
resulting in an incorrect grouping.

Figure 17. Clustering using color moments, resulting in 
multiple red route groupings.

Figure 18. Histogram-based clustering resulting in one 
dominant cluster.
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2.5.2.2 Siamese network implementation

The first network architecture adopts a Siamese 
configuration (16), which utilizes two parallel pretrained 
ResNet50 (17) branches with shared weights. The final 
classification layer is removed, and the outputs from the 
last layers are concatenated and fed through several fully 
connected layers, culminating in a single neuron output 
that is squashed to the range [0, 1] via a Sigmoid activation 
function. Figure 19 displays an example of the network 
structure used to compare pairs of holds.

The network is optimized using binary cross-entropy loss 
with the AdamW optimizer (18). Initially, the network 
is trained for 100 epochs at a learning rate of ϵ = 0.001, 
while keeping the weights of the ResNet backbone fixed. 
Subsequently, the backbone is unfrozen and fine-tuned for 
an additional 100 epochs at a lower learning rate of ϵ = 
0.00001. Sampling is conducted by randomly selecting an 
annotated image and then choosing holds from the same or 
different routes, ensuring that holds are not inadvertently 
mixed with similar-colored holds from other routes.

2.5.2.3 Triplet network approach

A second network design is inspired by FaceNet (19). This 
approach embeds hold images into a d-dimensional space 
(with d = 256) while normalizing the embeddings such that 
|| f (x) || 2 = 1. The triplet loss function is minimized to 
enforce that the Euclidean distance between an anchor and 
a positive sample (from the same route) is smaller than that 
between the anchor and a negative sample (from a different 
route) by at least a margin α, as described by

  

where ai, pi, and ni represent the embeddings of the 
anchor, positive, and negative samples, respectively. 
A visualization of this loss mechanism is presented in 
Figure 20.

In a manner similar to the Siamese network, the triplet-
based model is trained with the same hyperparameters. 
Sampling involves choosing two holds from a common 
route (anchor and positive) and one hold from a distinct 
route (negative). Triplet mining is applied to focus on 
challenging examples, although this refinement yielded 
only incremental benefits. Figure 21 illustrates the overall 
architecture of the triplet network.

2.5.2.4 Augmentation and evaluation

Heavy use of data augmentation (random rotations, 
horizontal and vertical flips, and color adjustments) is 
crucial given the limited number of annotated training 

Figure 21. Illustration of the triplet network, where 
anchors and positive samples belong to the same route 

while negatives come from a different route.

Figure 22. Siamese network producing a small cluster

Figure 23. Triplet network combining light and dark 
green holds.

Figure 19. Example of a siamese network used for 
comparing hold images from different routes.

Figure 20. Visualization of triplet loss.
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images. For evaluation, the Siamese network is assessed 
by measuring the accuracy in determining whether 
pairs of holds belong to the same route. Meanwhile, the 
triplet network’s performance is gauged by counting the 
proportion of triplets that satisfy the constraint ||ai − pi || 2 
< || ai − ni || 2. Table III summarizes the accuracy metrics 
for both approaches.

2.5.2.5 Route formation algorithm

Routes are constructed by initializing a cluster with a 
randomly selected hold and then iteratively comparing 
each unassigned hold against holds in existing routes. If the 
median distance between the candidate hold and all holds 
in a route is below a threshold tmed, and the maximum 

distance does not exceed tmax, the hold is appended to that 
route. If no matching route is found, a new route is initiated. 
The resultant clusters are visualized in Figure 26, which 
demonstrates differences in clustering behavior between the 
Siamese and Triplet models. Notably, the Siamese network 
often produces smaller, more homogeneous clusters, while 
the triplet network tends to generate larger clusters that may 
inadvertently merge holds of similar hues across routes.

3. FINDINGS

3.1 HOLD SEGMENTATION

Conventional hold segmentation delivers acceptable 
outcomes only when the parameters are meticulously 
calibrated for each specific dataset. This approach, 
although free from the burden of extensive manual 
annotation required by learningbased methods, suffers 
from the limitation of having to adjust parameters for each 
new background or hold color variation, often resulting in 
suboptimal segmentation performance.

In contrast, the learning-based strategy for hold 
segmentation exhibits markedly superior accuracy and 
robustness. This method, despite necessitating a manually 
annotated dataset, specialized hardware (e.g., a CUDA-
enabled GPU), and longer training durations, consistently 
outperforms traditional techniques. The increased 
precision of the deep learning framework suggests that the 
higher resource investment is justified by the significant 
improvements in detection and delineation of holds.

3.2 ROUTE SEGMENTATION

The conventional route segmentation method relies 
on predefined clustering parameters, including the 
predetermined number of clusters, which must be set in 
advance. Among the various techniques experimented 
with, mean color clustering emerged as the most effective 
when handling holds with uniform colors under controlled 
lighting conditions. However, the conventional methods 
can struggle when faced with overlapping routes or 
inconsistent color distributions.

The machine learning-based approach, leveraging 
similarity metrics through Siamese and triplet network 
architectures shows only a modest improvement over 
traditional clustering methods. Despite the slight edge 
in performance, there is clear potential for further 
enhancement by expanding the annotated dataset and 

Table 3. Accuracy in determining whether two hold 
images belong to the same route

Model Accuracy

Siamese Network 66.95%

Triplet Network 81.74%

Figure 24. Triplet network merging holds with subtle 
color variations.

Figure 25. Triplet network clustering black/gray holds.

Figure 26. Clustering results for route segmentation using 
the Siamese and Triplet network approaches (tmed = 0.7, 

tmax = 2.65).
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extending the training period. Additionally, integrating 
the spatial context of the entire image—beyond the 
individual hold—may offer a more nuanced determination 
of route membership, further refining the accuracy of route 
segmentation.

4. CONCLUSION

Both conventional and deep learning-based methodologies 
were implemented for the dual tasks of hold and route 
segmentation in indoor climbing environments. For hold 
segmentation, the traditional technique capitalizes on blob 
detection for pinpointing hold locations and edge detection 
for outlining their contours, implemented using OpenCV 
(10). In contrast, the deep learning approach utilizes the 
detectron2 implementation of Mask R-CNN (11), which 
was specifically fine-tuned to address the nuances of 
climbing hold detection.

Regarding route segmentation, a conventional strategy 
based on clustering algorithms provided baseline results 
by grouping holds using features such as mean colors, 
histograms, and color moments, all processed with tools 
from OpenCV (10) and scikit-learn (14). The learning-
based method, on the other hand, applies a ResNet-based 
model to generate feature embeddings, ensuring that holds 
from the same route exhibit minimal L2 distances in the 
embedding space. Although the improvement in route 
segmentation accuracy was incremental, it underscores 
the potential of deep learning methods in capturing subtle 
visual similarities between holds.

The comparative analysis reveals that while both tasks 
benefit from deep learning approaches, the tradeoff 
involves increased demands in terms of manual dataset 
annotation and computational resources. Nevertheless, the 
significant improvements in segmentation accuracy justify 
these investments. The detailed experiments indicate 
that refining network parameters, expanding the dataset, 
and incorporating full- image spatial context may further 
enhance performance.
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