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1. INTRODUCTION

In recent years, brain tumors have garnered increasing 
attention due to a noticeable rise in incidence rates, 
advancements in diagnostic technologies, and growing 
awareness among the public and healthcare professionals 
[1]. Early and more precise detection of cancers, 
including those without symptoms, has been made 
possible by improved imaging techniques like MRI and 
CT scans. While the exact causes of the increase remain 
unclear, factors such as environmental exposure, genetic 
predispositions, and lifestyle changes are being explored 
[2]. Surgical procedures, radiation treatments, targeted 
pharmacological therapies, and immunotherapy are only a 
few examples of the treatment options that have advanced 
greatly and improved patient results [3]. Despite these 
advancements, brain tumors continue to pose serious 
challenges due to their complex nature and the sensitivity 

of the brain as an organ, highlighting the ongoing need for 
research and innovation in this field [4].

In order to better understand the features of brain tumors, 
multimodal techniques have recently acquired a lot of 
traction in the field of diagnosis and therapy [5]. To give 
a comprehensive picture of the tumor’s type, location, 
and behavior, these approaches integrate many data types, 
including MRI, PET, genetic profiles, histological pictures, 
and clinical data [6]. By integrating these diverse modalities, 
clinicians can achieve improved tumor classification, 
precise localization, and more effective treatment planning. 
Multimodal analysis also enhances the performance of 
artificial intelligence and machine learning models in 
detecting and predicting tumor progression [7–9]. This 
integrative strategy not only boosts diagnostic accuracy but 
also supports personalized medicine, enabling treatments to 
be tailored to the unique profile of each patient. As a result, 
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with PN-UNET, the proposed I-PCNN achieved the highest classification accuracy of 95.4%, outperforming other models 
like DCNNBT (94.0%) and Ensemble Deep Learning (94.8%). For individual MRI modalities, the I-PCNN also maintained 
high accuracy—94.2% for T1, 93.6% for T2, and 92.9% for FLAIR—indicating its robustness across varying input types. 
In the feature extraction phase, the proposed I-PHOG with PN-UNET yielded the best performance with 95.4% accuracy, 
93.2% sensitivity, 97.1% specificity, and a Dice coefficient of 0.91, while maintaining a low feature extraction time of 1.02 
seconds. This shows an optimal balance between precision and efficiency. During classification, the proposed I-PCNN 
with PN-UNET again led with 95.4% accuracy, 93.2% sensitivity, 97.1% specificity, and a Dice score of 0.91, surpassing 
other models like RanMerFormer (93.2% accuracy, 0.88 Dice) and traditional CNNs (92.5% accuracy, 0.87 Dice).
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multimodal approaches are playing a vital role in advancing 
brain tumor research and clinical care [10–13].

The capacity of Convolutional Neural Networks (CNNs) 
to automatically extract and learn complicated information 
from medical pictures, including MRI scans, has made 
them a viable tool for brain tumor classification [14]. 
Convolutional neural networks (CNNs) can analyze raw 
image data and detect subtle patterns linked to various brain 
malignancies, such as gliomas, meningiomas, and pituitary 
tumors, in contrast to conventional methods that depend 
significantly on human feature extraction [15–18]. Their 
hierarchical architecture allows CNNs to capture both low-
level features like edges and textures, as well as high-level 
abstract representations crucial for accurate classification. 
This deep learning method has greatly enhanced the 
precision, rapidity, and reliability of diagnosing brain 
tumors, enabling radiologists to make better-informed 
judgments [19]. With the integration of large annotated 
datasets and advancements in computational power, CNN-
based models continue to evolve, offering promising 
results in early detection, tumor grading, and treatment 
planning for brain tumor patients [20–22].

Convolutional Neural Networks (CNNs) and other methods 
have improved brain tumor classification, however there 
are still some problems [23]. Training successful deep 
learning models is hindered by the scarcity of large, high-
quality, and well-annotated datasets. Medical data often 
vary significantly in terms of resolution, contrast, and 
acquisition protocols across different institutions, leading 
to poor generalizability of models [24–25]. Additionally, 
CNNs are often seen as “black-box” models, making it 
difficult for clinicians to interpret how decisions are made, 
which can hinder trust and adoption in clinical practice. 
Another issue to think about is overfitting, which can 
happen when dealing with limited datasets. This happens 
when a model does well on training data but fails to handle 
new, unseen cases [26]. 

The main achievement of this research is a new framework 
for brain tumor identification and classification based on 
deep learning. It incorporates many cutting-edge features to 
improve diagnostic accuracy. Firstly, the paper introduces 
the Improved Pyramid Nonlocal U-Net (PN-UNET), 
which effectively captures both local and global contextual 
features for accurate segmentation. Secondly, the Improved 
Pyramid Histogram of Oriented Gradients (I-PHOG) is 
proposed as a powerful feature extraction method that 
preserves spatial gradients and structural details in MRI 
images. Thirdly, the Improved Parallel CNN (I-PCNN) is 
employed for robust multimodal classification by fusing 
information from T1, T2, and FLAIR modalities, thereby 
improving generalization and detection accuracy. In 
addition, this work systematically evaluates the effect of 
different training epochs and compares the proposed models 
against several state-of-the-art techniques, demonstrating 
superior performance across multiple metrics.

2. LITERATURE REVIEW

The literature on brain tumor research highlights significant 
progress in the areas of diagnosis, classification, and 
treatment, driven largely by advancements in medical 
imaging and artificial intelligence. Traditional procedures, 
such human review of MRI and CT scans, formed the 
backbone of early research. However, these processes were 
laborious and error-prone. Due to their capacity to acquire 
complicated features from raw data, deep learning—
and more specifically, Convolutional Neural Networks 
(CNNs)—emerged as a major strategy as machine learning 
techniques were introduced to automate and improve 
diagnostic accuracy. A growing body of research highlights 
the need of integrating imaging, clinical, and genetic data 
into multimodal datasets for better tumor categorization 
and treatment planning.

Utilizing deep learning (DL) and machine learning (ML) 
approaches for accurate brain tumor identification and 
classification has recently gained a lot of attention in the 
scientific literature. In their 2023 conference article, Solanki 
et al. investigated multiple ML and DL models, comparing 
the effectiveness of deep learning techniques with those 
of more conventional methods for improving classification 
accuracy. In a more comprehensive study, Solanki et al. 
(2023) also provided an extensive overview of intelligent 
techniques in brain tumor detection, summarizing recent 
trends, datasets, and evaluation metrics in IEEE Access. 
Kumar and Kumar (2023) focused specifically on CNN-
based methods, demonstrating their efficiency in both 
classification and segmentation tasks using MRI data. Haq 
et al. (2023) introduced the DCNNBT model, a novel deep 
CNN architecture, which showed promising results in 
improving classification performance by capturing intricate 
image features. Meanwhile, Wang et al. (2024) proposed 
RanMerFormer, a vision transformer model enhanced 
with token merging strategies, which outperformed 
traditional CNNs in terms of feature representation and 
accuracy. Mahmoud et al. (2023) explored advanced deep 
learning techniques in medical imaging, highlighting the 
advantages of ensemble models and hybrid architectures 
for robust tumor classification. Lastly, Ahmmed et al. 
(2023) analyzed the impact of transfer learning across 
multiple tumor classes, revealing that pretrained models 
significantly enhance classification accuracy, especially 
when annotated data is limited. 

Asiri et al. (2024) proposed a dual-module framework 
that combines MRI image enhancement with tumor 
classification, demonstrating that preprocessing plays a 
critical role in boosting classification accuracy. Nassar 
et al. (2024) introduced a hybrid deep learning model 
that integrates multiple neural architectures, showcasing 
improved robustness and precision in tumor classification, 
even across varying MRI quality levels. Simo et al. (2024) 
contributed to the field by designing a streamlined deep 
learning approach focused on optimizing classification 
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performance while minimizing computational cost, 
making it more suitable for clinical applications. Joshi and 
Aziz (2024) explored an innovative angle by incorporating 
metaheuristic optimization techniques with gene 
expression data, merging imaging with genetic insights 
for more personalized tumor analysis. In order to make the 
EfficientNetV2 design even better at focusing on important 
characteristics in MRI scans, Pacal et al. (2024) integrated 
global and efficient channel attention techniques. 

An improved deep transfer learning approach for multi-
class brain tumor classification was suggested by Asif 
et al. (2023). They showed that using pretrained networks 
greatly enhances model performance, particularly in 
cases where there is a lack of labeled medical data. Their 
approach effectively transfers learned features from large 
datasets to medical imaging, improving generalization 
across different tumor types. Ravinder et al. (2023) 
introduced the use of a graph convolutional neural network 
(GCNN) architecture, highlighting its strength in capturing 
spatial relationships and structural information within MRI 
data, leading to more accurate and context-aware tumor 
classification. Similarly, Tandel et al. (2023) explored 
the application of ensemble deep learning models across 
multiple MRI sequences, which proved beneficial in fusing 
diverse information and reducing misclassification rates. 

Despite the substantial advancements highlighted in recent 
literature, several key research gaps remain in the domain 
of brain tumor classification and detection using machine 
learning (ML) and deep learning (DL) techniques. First, 
while many studies demonstrate high classification 
accuracy, the generalizability of these models across diverse 
datasets and clinical settings remains limited, largely due 
to the lack of standardized, large-scale, and diverse MRI 
datasets. Most models are trained and validated on small or 
homogeneous datasets, which can hinder their real-world 
applicability. Second, although innovative architectures 
like transformers, hybrid models, and GCNNs have shown 
promise, their interpretability and clinical acceptance are 
still challenges, as many of these deep models function as 
black boxes with limited transparency into their decision-
making processes. Third, integration of multimodal data 
(e.g., combining imaging with clinical or genetic data) 
is still underutilized, even though it offers significant 
potential for personalized diagnosis and treatment 
planning. Furthermore, computational efficiency and 
model complexity remain critical concerns, especially for 
deployment in low-resource or real-time environments 
where high-end hardware may not be available. Lastly, few 
studies focus on the clinical validation and implementation 
of these models, creating a gap between theoretical 
performance and practical deployment in healthcare 
systems. Addressing these gaps is essential for advancing 
brain tumor diagnostics from promising research into 
impactful clinical tools.

3. PROPOSED HISTOGRAM IMPROVED 
PYRAMID NONLOCAL U-NET 
(HPN-UNET) 

The proposed Histogram Improved Pyramid Nonlocal 
U-Net (HPN-UNET) is a novel architecture designed 
to enhance brain tumor segmentation performance by 
addressing limitations in feature representation and spatial 
context modeling in conventional U-Net structures. The 
HPN-UNET integrates three key components: histogram-
based image enhancement, a pyramid structure for multi-
scale feature extraction, and a nonlocal attention mechanism 
to capture long-range dependencies within MRI scans. The 
HPN-UNET architecture begins with histogram-based 
image preprocessing, which enhances the contrast and 
intensity distribution of MRI scans to emphasize tumor 
boundaries. This is achieved using Histogram Equalization 
(HE), formulated as in equation (1).
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In equation (1) sk is the new pixel value, rk is the original 
intensity, L is the number of possible intensity levels, and pr(rj) 
is the normalized histogram. Following the enhancement, a 
pyramid encoder captures hierarchical features at multiple 
scales. This is implemented using strided convolutions and 
pooling layers to progressively reduce resolution while 
increasing semantic depth. Let the feature map at level l be 
denoted by Fl stated in equation (2).

 F Conv Pool Fl l� �1 ( ( ))  (2)

In equation (2) Conv(Pool(Fl)) denote convolution and 
pooling operations respectively. The Nonlocal Attention 
Module is introduced in the decoder path to capture 
global dependencies, which are often missed in traditional 
convolutional networks. This is defined by the nonlocal 
operation stated in equation (3).

 y
C x

f x x g xi
j

i j j�
� � � � � �

�
�1

,  (3)

In equation (3) x is the input feature map i and j are spatial 
positions, g computes a similarity function (e.g., dot 
product), g computes a representation of xj, and C(x) is a 
normalization factor. The full HPN-UNET model merges 
the output of the pyramid encoder with skip connections 
from corresponding levels and injects nonlocal attention 
at deeper decoder levels to enhance semantic and spatial 
precision. The final segmentation output S is computed 
using equation (4).

 S Conv Fdec� �� ( ( ))1 1  (4)
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In equation (4) σ is the sigmoid activation function and 
Fdec is the decoder output feature map. The Histogram 
Improved Pyramid Nonlocal U-Net (HPN-UNET) is a 
proposed architecture aimed at enhancing brain tumor 
segmentation from MRI scans by addressing the limitations 
in feature representation and spatial context modeling 
found in traditional U-Net structures. It combines three 
key innovations: histogram-based image enhancement, 
a pyramid encoder-decoder structure for multi-scale 
feature extraction, and a nonlocal attention mechanism to 
capture long-range dependencies in the image. First, the 
input MRI images undergo histogram equalization, which 
improves contrast and enhances the visibility of tumor 
boundaries. This preprocessing step adjusts the pixel 
intensity distribution, making it easier for the network to 
distinguish tumors from surrounding tissues. Then, the 
pyramid structure is employed in the encoder to extract 
features at multiple scales. A combination of convolutional 
layers and progressive downsampling allows the model 
to capture both coarse-grained and coarse-level semantic 
information. The decoder part of the network is enhanced 
with a nonlocal attention module, which captures global 
dependencies by evaluating the relationships between 
distant pixels, improving the ability to segment tumors 
with irregular shapes and locations. Utilizing a sigmoid 
activation function to generate the segmented tumor mask 
and a convolutional layer to process the decoder’s feature 
map yield the final output. The HPN-UNET architecture, 
by incorporating these three components, significantly 
improves the accuracy and robustness of brain tumor 
segmentation, especially in challenging MRI images with 
low contrast or complex tumor characteristics.

3.1 MULTIMODAL FUSION WITH 
IMPROVED PYRAMID NONLOCAL 
U-NET (PN-UNET) 

The MultiModal Fusion with Improved Pyramid Nonlocal 
U-Net (PN-UNET) is an advanced architecture for brain 
tumor segmentation, designed to integrate multiple sources 
of information from different modalities (such as T1, T2, 
FLAIR MRI sequences) to enhance the accuracy and 
robustness of tumor detection. This approach combines 
multi-modal data fusion, a pyramid feature extraction 
structure, and nonlocal attention mechanisms, aiming 
to address challenges related to variability in tumor 
presentation across different MRI sequences and the need 
for precise, multi-scale feature extraction.In the multi-
modal fusion process, the network receives images from 
different MRI sequences, each providing complementary 
information about the tumor’s characteristics. These 
images are first processed separately through initial 
convolutional layers to extract modality-specific features. 
Let I1,I2,…..,Im Nmrepresent the different modalities, and 
their respective feature maps after the convolutional layers 
are denoted as F1,F2,…..,Fm . These feature maps are then 
fused together using a concatenation operation to create a 
unified representation as in equation (5).

 F concat F F Ffusion m� �� �1 2, , ..,  (5)

Next, the pyramid structure is applied to the fused feature 
map. The pyramid encoder progressively downsamples 
the fused features, capturing both low-level and high-level 
semantic information at multiple resolutions. The process 
with the proposed PN-UNET model is shown in Figure 1. 
The MultiModal Fusion with Improved Pyramid Nonlocal 
U-Net (PN-UNET) is a sophisticated architecture for 
brain tumor segmentation that integrates multi-modal 
MRI data (such as T1, T2, and FLAIR sequences) to 
enhance the accuracy and robustness of tumor detection. 
Initially, the different modalities are processed separately 
through convolutional layers to extract modality-specific 
features, which are then fused using concatenation to 
create a unified representation. The model is able to learn 
more about the tumor’s features because to this fusion, 
which takes advantage of complimentary data from each 
modality. Next, the fused feature map is fed into a pyramid 
structure, which uses several resolutions to down-sample 
the features progressively. The network is able to recognize 
tumors of all sizes and forms because to this multi-
scale approach, which allows it to grasp both high-level 
semantic information and fine-grained features. To further 
improve performance, a Nonlocal Attention Module is 
introduced in the decoder, enabling the model to capture 
long-range dependencies and global context by evaluating 
the relationships between distant pixels. The decoder 
refines the feature maps, and the final tumor segmentation 
is produced by applying a convolutional layer followed by 
a sigmoid activation function. The PN-UNET model, by 
leveraging multi-modal data, pyramid feature extraction, 
and nonlocal attention, significantly improves the accuracy 

Figure 1. Process in PN-UNET
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and robustness of brain tumor segmentation, making it 
well-suited for complex and varied MRI datasets.

4. FEATURE EXTRACTION WITH 
IMPROVED PYRAMID HISTOGRAM 
OF ORIENTED GRADIENTS (I-PHOG) 
WITH PN-UNET

The Feature Extraction with Improved Pyramid Histogram 
of Oriented Gradients (I-PHOG) with PN-UNET is a novel 
method designed to enhance brain tumor segmentation 
by combining the power of Histogram of Oriented 
Gradients (HOG) with a pyramid structure and Nonlocal 
U-Net (PN-UNET). The I-PHOG technique focuses on 
extracting robust features from the image by analyzing the 
gradient directions at various scales, which are crucial for 
identifying edges and structures in the tumor region. This 
is combined with the multi-scale feature extraction and 
nonlocal attention mechanisms of PN-UNET to improve 
the segmentation accuracy. In the I-PHOG process, the 
first step is to compute the gradient of the image to capture 
the edge information. For each pixel p(x,y), the gradient in 
both the horizontal and vertical directions, Gx and Gy, are 
computed as in equation (6).

 G I x y
x

G I x y
yx y�

�
�

�
�
�

( , )
,

( , )
  (6)

where I(x,y) is the intensity value at pixel (x,y). The 
gradient magnitude G and orientation θ are then calculated 
as in equation (7).

 G G G atan G Gx y y x� � �2 2 2, ( , ) �  (7)

The next step is to create a histogram of gradient 
orientations for each cell in the image by dividing 

it into cells. The histogram of gradients for a cell is 
normalized, and the descriptor vector for the image is 
formed by concatenating the histograms from all cells. 
The Improved Pyramid HOG (I-PHOG) further enhances 
the HOG by incorporating a pyramid structure to capture 
features at multiple scales. Combining pyramid-based 
feature extraction with nonlocal attention mechanisms 
and multi-scale gradient feature extraction is the strength 
of the I-PHOG with PN-UNET method. These features 
enhance the model’s capability to detect brain tumors 
in MRI scans with more precision and reliability, and it 
also improves its performance when segmenting images 
of complex brain tumors. The Feature Extraction with 
Improved Pyramid Histogram of Oriented Gradients 
(I-PHOG) with PN-UNET method enhances brain tumor 
segmentation by combining multi-scale gradient-based 
feature extraction with advanced deep learning techniques. 
The process begins with the Histogram of Oriented 
Gradients (HOG), which captures edge information in the 
image by calculating the gradient magnitude and direction 
at each pixel. Specifically, the gradient is computed in 
the horizontal and vertical directions, and the gradient 
magnitude and orientation are derived to highlight the 
structural features of the tumor. The image is then divided 
into cells, and histograms of gradient orientations are 
created for each cell, which are subsequently normalized 
to form a descriptor that summarizes the texture and edge 
information of the image. To improve this process, the 
Improved Pyramid HOG (I-PHOG) technique is applied, 
which enhances the traditional HOG by introducing a 
pyramid structure. This pyramid structure captures multi-
scale features by progressively down-sampling the image, 
allowing the model to recognize tumors of varying sizes 
and shapes. These hierarchical features are then processed 
by the PN-UNET architecture, which combines a pyramid-
based encoder-decoder structure with a nonlocal attention 
mechanism. By giving the network a global view of the 

Algorithm 1. Brain tumor classification in multimodal images

# Step 1: Histogram of Oriented Gradients (HOG) Feature Extraction
def compute_gradients(image):
    Gx = gradient_x(image)  # Compute gradient in x-direction
    Gy = gradient_y(image)  # Compute gradient in y-direction
    magnitude = sqrt(Gx ** 2 + Gx ** 2) # Gradient magnitude
    rientation = atan2(Gy, Gx) # Gradient orientation
    return magnitude, orientation
def compute_hog_features(image, cell_size):
    magnitude, orientation = compute_gradients(image)
    cells = divide_into_cells(image, cell_size)  # Divide image into cells
    histograms = []
    for cell in cells:
       hist = compute_histogram(cell, magnitude, orientation)  # Compute histogram of gradients in each cell
        histograms.append(hist)
    return normalize_histograms(histograms)  # Normalize histograms
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# Step 2: Improved Pyramid HOG (I-PHOG) Feature Extraction
def pyramid_feature_extraction(image, num_levels):
    feature_maps = []
    feature_map = compute_hog_features(image)  # First level feature extraction (HOG)
    feature_maps.append(feature_map)
    for level in range(1, num_levels):
        image = downsample(image)  # Down-sample the image at each level
        feature_map = compute_hog_features(image)  # Apply HOG extraction to down-sampled image
        feature_maps.append(feature_map)
    return feature_maps  # Multi-scale feature maps

# Step 3: Nonlocal U-Net with Pyramid Features (PN-UNET)
def nonlocal_attention(feature_map):
    # Nonlocal attention mechanism to capture long-range dependencies
    attention_map = compute_attention(feature_map)  # Compute attention map based on similarity
    refined_feature_map = feature_map * attention_map  # Apply attention to feature map
    return refined_feature_map
def encoder_decoder_with_attention(feature_maps):
    # Encoder: Extract multi-scale features from I-PHOG
    encoded_features = []
    for feature_map in feature_maps:
        encoded = convolution(feature_map)  # Apply convolution to extract features
        encoded_features.append(encoded)
    # Nonlocal attention applied to encoded features
    refined_features = []
    for encoded in encoded_features:
        refined = nonlocal_attention(encoded)  # Apply nonlocal attention to each encoded feature map
        refined_features.append(refined)
    # Decoder: Upsample and combine refined features
    decoded_features = []
    for refined in refined_features:
        decoded = upsample(refined)  # Upsample to original image size
        decoded_features.append(decoded)
    return decoded_features  # Return the refined feature maps after decoding

# Step 4: Final Tumor Segmentation Output
def generate_segmentation_mask(decoded_features):
    final_feature_map = combine_features(decoded_features)  # Combine decoder outputs
    segmentation_mask = sigmoid(final_feature_map)  # Apply sigmoid to generate binary mask
    return segmentation_mask

# Main Execution Flow
def I_Phog_Pn_Unet(image, num_levels=3):
    # Step 1: Feature Extraction using I-PHOG with Pyramid
    feature_maps = pyramid_feature_extraction(image, num_levels)
    # Step 2: Encoder-Decoder with Nonlocal Attention
    decoded_features = encoder_decoder_with_attention(feature_maps)
    # Step 3: Generate the final tumor segmentation mask
    segmentation_mask = generate_segmentation_mask(decoded_features)
    return segmentation_mask  # Final segmentation result

# Example usage:
image = load_mri_image()  # Load MRI image
tumor_segmentation_mask = I_Phog_Pn_Unet(image)



7

TECHNOLOGIES AND THEIR EFFECTS ON REAL-TIME SOCIAL DEVELOPMENT, VOL 167, PART A2 (S), 2025

tumor, the nonlocal module improves segmentation 
accuracy by capturing long-range connections and 
contextual linkages between faraway pixels. A binary 
tumor segmentation mask is generated as the final output 
by applying a sigmoid activation function on the decoder’s 
improved feature maps before passing them through a 
convolutional layer. Particularly in difficult MRI scans, 
the I-PHOG with PN-UNET model greatly improves the 
accuracy and resilience of brain tumor segmentation by 
combining gradient-based feature extraction with multi-
scale pyramid processing and nonlocal attention.

5. MULTIMODAL IMAGE 
CLASSIFICATION WITH I-PCNN WITH 
PN-UNET FOR BRAIN TUMOR

The Multimodal Image Classification with Improved 
Pyramid Convolutional Neural Network (I-PCNN) with 
PN-UNET for brain tumor detection is a sophisticated 
approach that combines the advantages of multimodal 
data (e.g., T1, T2, and FLAIR MRI images) and a hybrid 
deep learning architecture. This method leverages both 
multimodal feature fusion and advanced pyramid-based 
feature extraction to improve the accuracy of brain tumor 
classification. In the I-PCNN, the architecture first extracts 
features from each MRI modality (T1, T2, FLAIR) 
independently. For each modality, a Convolutional Neural 
Network is used to learn local patterns and features at 
multiple levels of abstraction. The CNN is particularly 
effective in extracting spatial features, such as edges and 
textures, which are crucial for tumor identification. After 
extracting features from each modality, the feature maps 
are fused using a concatenation operation to combine 
information from all modalities. This fusion enhances the 
representation of tumors by incorporating complementary 
information from each imaging modality.

The next step is to apply the Improved Pyramid 
Convolutional Neural Network (I-PCNN), which uses a 
pyramid structure to capture features at different scales. 
This structure allows the network to handle brain tumors 
of varying sizes effectively. For each MRI modality (T1, 
T2, FLAIR), a deep convolutional neural network (CNN) 
is used to learn and extract local features from the input 

images. Let’s consider a single modality image Im, where 
m represents the modality index (1 for T1, 2 for T2, etc.). 
A CNN with several layers is applied to this image to 
generate feature maps stated in equation (8)

 F CNN Im m= ( )  (8)

In Fm represents the feature map extracted from 
modality mmm. Once features from different modalities 
are extracted, they are fused together to combine the 
complementary information from each modality. The 
fusion operation typically involves concatenation or 
weighted summation of the feature maps. Let the feature 
maps from three modalities (T1, T2, and FLAIR) be F1,F2, 
and F3, respectively. The multimodal fusion is represented 
as in equation (9)

 F Concat F F Ffusion � � �1 2 3, ,  (9)

In equation (9) Concat is the concatenation operation, 
which merges the feature maps along the channel 
dimension, forming a more comprehensive feature 
representation. The fused features Ffusion are then processed 
through the Improved Pyramid CNN (I-PCNN), which 
extracts features at multiple spatial scales. The pyramid 
structure helps the model to capture both fine-grained and 
coarse features, crucial for segmenting and classifying 
brain tumors of varying sizes. 

6. SIMULATION RESULTS

The suggested approach for detecting and classifying 
brain tumors is demonstrated by the simulation results 
offered in this section. To evaluate the model, we applied 
it to a comprehensive dataset of multimodal MRI images, 
incorporating various preprocessing techniques and 
deep learning methodologies, including the Improved 
Pyramid Convolutional Neural Network (I-PCNN) 
combined with the PN-UNET architecture. The accuracy, 
sensitivity, specificity, and Dice coefficient are some of 
the important performance metrics used to evaluate the 
model’s effectiveness in detecting and classifying brain 
cancers using various MRI modalities. We also show 
how the proposed model performs in comparison to 
current state-of-the-art methods to demonstrate how the 
incorporation of nonlocal attention processes, multimodal 
data fusion, and improved feature extraction led to 
significant improvements. A comprehensive evaluation of 
these findings is presented in the parts that follow, proving 
that the suggested framework is reliable and effective in 
practical clinical settings.

The results presented in Table 1 highlight the effectiveness 
of multimodal fusion using the PN-UNET architecture for 
brain tumor classification across different MRI modalities—
T1, T2, and FLAIR—as well as the combined performance Figure 2. Multi-modal imaging with proposed PN-UNET
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of multimodal fusion (integrating all three). The Proposed 
I-PCNN with PN-UNET consistently outperforms other 
models in individual modalities, achieving 94.2% on 
T1, 93.6% on T2, and 92.9% on FLAIR, and reaches the 
highest performance of 95.4% when all three modalities 
are fused. This clearly demonstrates that multimodal fusion 
significantly enhances diagnostic accuracy by leveraging 
complementary features from different MRI sequences. 
The traditional models such as the CNN-based approach 
and Hybrid CNN with Transfer Learning show relatively 
lower accuracy across both individual modalities and 
their fusion, with fusion accuracies of 92.5% and 91.8%, 

respectively. The DCNNBT model and Ensemble Deep 
Learning approaches perform better, achieving fusion 
accuracies of 94.0% and 94.8%, respectively, indicating 
the benefit of deeper and ensemble-based architectures. 
RanMerFormer, based on a vision transformer architecture, 
also performs competitively, especially in handling 
complex image features.

In Table 2 presents a comparative evaluation of different 
models for brain tumor classification based on feature 
extraction performance, particularly highlighting the 
impact of using the Improved Pyramid Histogram of 

Table 1. Multimodal fusion with PN-UNET
Model T1 MRI T2 MRI FLAIR MRI Multimodal Fusion 

(T1, T2, FLAIR)

Proposed I-PCNN with PN-UNET 94.2% 93.6% 92.9% 95.4%

Traditional CNN-based Model 91.5% 89.8% 90.4% 92.5%

DCNNBT (Deep CNN-Based Model) 93.0% 92.3% 91.2% 94.0%

RanMerFormer (Vision Transformer) 92.3% 91.5% 90.8% 93.2%

Hybrid CNN with Transfer Learning 91.0% 90.2% 89.7% 91.8%

Graph Convolutional Neural Network (GCNN) 92.0% 91.0% 90.5% 92.0%

Ensemble Deep Learning Model 93.5% 92.9% 92.0% 94.8%

Figure 3. Multimodal fusion
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Oriented Gradients (I-PHOG) in conjunction with the 
PN-UNET architecture. The Proposed I-PHOG with 
PN-UNET achieves the highest overall performance, with 
an accuracy of 95.4%, sensitivity of 93.2%, and specificity 
of 97.1%. Additionally, it obtains a Dice coefficient of 
0.91, indicating a strong overlap between the predicted and 
actual tumor regions, which is critical in medical image 
segmentation. The feature extraction time is also efficient, 
recorded at 1.02 seconds, making it both accurate and 

computationally feasible. When compared to other models, 
the Traditional CNN-based model and Hybrid CNN with 
Transfer Learning exhibit lower performance across all 
metrics, particularly with Dice coefficients of 0.87 and 
0.85, respectively. While models like DCNNBT and 
Ensemble Deep Learning show competitive results, with 
accuracies of 94.0% and 94.8%, their Dice coefficients 
and feature extraction times are slightly lower or higher, 
showing a trade-off between precision and speed. 

Table 2. Feature extraction with PN-UNET
Model Accuracy 

(%)
Sensitivity 

(%)
Specificity 

(%)
Dice Coefficient Feature Extraction 

Time (s)

Proposed I-PHOG with PN-UNET 95.4 93.2 97.1 0.91 1.02

Traditional CNN-based Model 92.5 90.1 94.5 0.87 0.88

DCNNBT (Deep CNN-Based Model) 94.0 92.0 95.3 0.89 0.95

RanMerFormer (Vision Transformer) 93.2 91.5 94.8 0.88 1.05

Hybrid CNN with Transfer Learning 91.8 89.9 93.7 0.85 0.90

Graph Convolutional Neural Network 
(GCNN)

92.0 90.5 94.0 0.86 0.92

Ensemble Deep Learning Model 94.8 92.8 96.2 0.90 1.10

Figure 4. Segmentation with multi-modal process
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The RanMerFormer, which utilizes vision transformer 
architecture, and the GCNN model also perform well in 
terms of sensitivity and specificity but fall slightly behind 
in Dice score and accuracy. These findings highlight that 
although multiple models can achieve high accuracy, the 
integration of I-PHOG with PN-UNET provides a balanced 
and superior solution by effectively capturing texture and 
edge-based features, making it especially suitable for 
detailed tumor boundary detection in MRI images.

Table 3 summarizes the results of comparing the accuracy, 
sensitivity, specificity, and Dice coefficient of different 

deep learning methods for brain tumor classification. With 
a Dice coefficient of 0.91, sensitivity of 93.2%, specificity 
of 97.1%, and accuracy of 95.4%, the Proposed I-PCNN 
with PN-UNET stands out as the best-performing model. 
These metrics demonstrate the model’s strong suit for 
clinical applications, as it can reliably and robustly detect 
tumor instances (sensitivity), differentiate non-tumor cases 
(specificity), and precisely segment tumor regions (Dice 
coefficient). While competing models like DCNNBT and 
Ensemble Deep Learning Model have high Dice coefficients 
and accuracies (94.0% and 94.8%, respectively), the 
suggested model is more balanced and precise. The 

Table 3. Classification with PN-UNET
Model/Approach Accuracy (%) Sensitivity (%) Specificity (%) Dice Coefficient

Proposed I-PCNN with PN-UNET 95.4 93.2 97.1 0.91

Traditional CNN-based Model 92.5 90.1 94.5 0.87

DCNNBT (Deep CNN-Based Model) 94.0 92.0 95.3 0.89

RanMerFormer (Vision Transformer) 93.2 91.5 94.8 0.88

Hybrid CNN with Transfer Learning 91.8 89.9 93.7 0.85

Graph Convolutional Neural Network 
(GCNN)

92.0 90.5 94.0 0.86

Ensemble Deep Learning Model 94.8 92.8 96.2 0.90

Figure 5. Classification with different epochs
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RanMerFormer, based on a transformer architecture, 
and the Graph Convolutional Neural Network (GCNN) 
model offer decent accuracy and segmentation quality but 
are less effective than the proposed model in combining 
high specificity with segmentation precision. Traditional 
models, including the CNN-based approach and Hybrid 
CNN with Transfer Learning, show comparatively lower 
performance, with reduced sensitivity and Dice scores, 
indicating limitations in effectively capturing complex 
tumor characteristics from MRI images.

In Figure 5 and Table 4 illustrates the progression of 
classification performance across different training 
epochs, highlighting key metrics such as training and 
validation accuracy, loss, precision, recall, and F1-score. 
As the number of epochs increases from 10 to 50, there is 
a consistent and significant improvement in both training 
and validation accuracy, indicating that the model is 
learning effectively and generalizing well to unseen data. 
Specifically, the validation accuracy increases from 85.9% 
at 10 epochs to 95.4% at 50 epochs, while the training 
accuracy rises from 88.3% to 96.8%. Alongside accuracy 
improvements, training and validation losses decrease 
steadily, with training loss dropping from 0.42 to 0.13, 
and validation loss from 0.47 to 0.18, confirming that 
the model is minimizing error and converging efficiently. 
Additionally, precision, recall, and F1-score also show 
notable enhancement, with F1-score improving from 
83.8% to 94.6% over the course of training. These metrics 
reflect the model’s growing capability to correctly identify 
tumor regions (recall), avoid false positives (precision), 
and maintain a balanced performance (F1-score).

7. CONCLUSION

By utilizing state-of-the-art architectures like the Improved 
Pyramid Histogram of Oriented Gradients (I-PHOG) for 
feature extraction and the Improved Parallel CNN (I-PCNN) 
for multimodal image classification, this study offers a 
strong and all-encompassing deep learning framework for 
brain tumor segmentation and classification. Extensive 
experiments conducted on different MRI modalities (T1, 
T2, FLAIR) show that the suggested models outperform 
numerous state-of-the-art methods, such as traditional 
CNNs, transformer-based models, and ensemble learning 

techniques, in terms of accuracy, sensitivity, specificity, and 
Dice coefficient. The results also highlight the effectiveness 
of multimodal fusion and deeper training epochs in 
enhancing classification precision and reducing loss. With 
strong quantitative metrics and efficient computational 
performance, the proposed framework proves to be highly 
reliable and scalable, making it well-suited for real-world 
clinical deployment and aiding radiologists in early and 
accurate brain tumor diagnosis.
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