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Abstract: 

The IoT technology allows numerous devices to link up with the Internet and exchange 
data smoothly. It is predicted that shortly, there will be trillions of these devices connected. As a 
result, there is a growing demand for spectrum to deploy these devices. Many of these devices 
operate on unlicensed frequency bands, leading to interference as these bands become 
overcrowded. A new communication approach known as cognitive radio-based Internet of 
Things (CR IoT) is rapidly emerging to address this issue and the spectrum scarcity. This 
involves integrating cognitive radio technology into IoT devices, allowing for dynamic spectrum 
access, and overcoming interference problems. In current systems, a significant portion of the 
spectrum designated for primary users (PU) may be underutilized, leaving room for secondary 
users (SU) to utilize the spectrum. However, the main challenge is that SUs must continuously 
send packets until they find an available channel in real-world conditions, resulting in excessive 
communication and packet loss. To overcome these kinds of drawbacks in the network in this 
article dynamic intelligent channel allocation with optimized throughput-based cognitive UAV 
guided network model is developed. The major categories that are concentrated in this model are 
UAV-based cognitive IoT network construction, dynamic intelligent channel assignment model, 
and optimized throughput calculation process. By utilizing these methods, we can achieve 
streamlined channel allocation and economical communication, ultimately enhancing the 
performance of the UAV-guided CRN-based IoT environment. The implementation of this 
model is carried out in MATLAB software and the parameters that are considered for 
performance analysis are network throughput, power utilization, energy efficiency, data delivery 
ratio, and average delay. 

Index Terms: Internet of Things (IoT), Cognitive UAV, Unmanned Aerial Vehicles (UAV), 
Dynamic Intelligent Channel Assignment 

1 Introduction 
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The pressing need to address problems related to spectrum scarcity and energy shortages 
has emerged as a result of the swift growth in wireless traffic during the 5G era. One potential 
solution is the implementation of cognitive radio networks (CRNs), which can effectively utilize 
spectrum resources to address the problem of spectrum deficit [1-2]. It is essential for secondary 
users (SUs) in CRNs to strictly adhere to authorized spectrum usage and ensure that they do not 
disrupt primary users (PUs) with any unacceptable interference. There exist four primary 
methods for secondary users to access authorized spectrum: opportunistic spectrum sensing in 
overlay mode, spectrum sharing in underlay mode, cooperation, and a combination of overlay 
and underlay modes [3]. In overlay mode, secondary users will only transmit when primary users 
are not utilizing the spectrum, whereas in underlay mode, secondary users are able to coexist 
with primary users if their interference remains within acceptable limits [4-5]. In cooperation, 
SUs act as relays with PUs. The hybrid mode allows for continuous use of the authorized 
spectrum by adjusting power levels based on PU activity. The hybrid approach is seen as the 
most versatile and dynamic in terms of optimizing overall spectrum efficiency (SE) when 
compared to other methods. Moreover, progress in energy harvesting (EH) technology has 
enabled wireless users to efficiently collect renewable energy sources like solar, wind, and 
ambient radio frequency (RF) signals [6-8]. This innovation enables users to overcome energy 
scarcity challenges without relying on conventional fixed batteries or power sources. 

The adoption of UAVs in wireless communication has been on the rise as technology has 
advanced in recent years [9-10]. These UAVs have demonstrated significant promise for a range 
of purposes, including serving as wireless mobile terminals, base stations, access points, and 
relay terminals. Their incorporation into wireless networks can greatly improve connectivity, 
coverage, and capacity. However, some challenges and tradeoffs need to be considered when 
using UAVs in cooperative relay systems. One of the main challenges is optimizing the 
trajectory of the UAVs, which is crucial for ensuring efficient, stable, and safe flight operations 
[11]. This is especially important when these vehicles are being used as relay terminals in 
wireless networks. In pursuit of enhancing energy efficiency and extending the longevity of 
upcoming wireless communication systems, energy harvesting (EH) emerges as a promising 
strategy that has received considerable attention in the realms of cellular networks and relay 
selection for cooperative networks [12-13]. Effectively placing drones near individuals is a key 
obstacle in creating systems that utilize unmanned aerial vehicles (UAVs), as mentioned. Several 
optimization techniques, such as evolutionary algorithms, have been proposed. Wireless devices 
have the capability to harness energy from renewable sources or from the RF signals they 
receive. This phenomenon is referred to as RF-EH, in which energy-constrained wireless devices 
are capable of harvesting and storing energy from RF signals transmitted by other wireless 
devices [14]. The phrase IoT, or Internet of Things, denotes a collection of interconnected 
devices that are linked to the internet, often referred to as IoT devices. These devices possess 
special identification features and can collect, analyze, and share data online. They can also 
adjust their usage, deployment, and programming accordingly. In a general sense, IoT devices 
encompass unconventional computing gadgets located in various settings such as smart homes, 



offices, environmental monitoring systems, hospitals, industrial automation systems, connected 
vehicles, remote asset control systems, and more. Such devices have the capability to connect to 
the Internet and communicate wirelessly.  

Wireless communication has been evolving through the utilization of Cognitive Radio 
(CR), a promising communication model aimed at enhancing the efficiency of the existing radio 
spectrum. In order to improve spectrum efficiency and tackle possible scarcity concerns in future 
wireless networks, Cognitive Radio is foreseen to empower radio devices with intelligence for 
optimal spectrum utilization. Joseph Mitola first introduced CR, followed by an in-depth 
examination of CR-based Networks (CRNs). By detecting and making use of unused frequency 
bands, CR enables Secondary Users (SUs) to operate more efficiently. Additionally, CR can 
sense and monitor surrounding radio environments to determine whether Primary Users (PUs) 
are present or not. This enables the discovery and use of vacant spectrum gaps or unused 
communication time slots without causing any disruption to Primary Users (PUs). In IoT-based 
networks, where many wireless devices require spectrum for their operations, utilizing the 
limited resources is crucial. As a result of the rapid progress in the wireless communication 
sector and the extensive use of diverse wireless networks, the radio spectrum is becoming more 
crowded. However, CR demonstrates significant potential in effectively accommodating many 
IoT devices in the current spectrum. The article explores the research challenges, open issues, 
and future directions for CIoT networks in depth. Effectively utilizing the available radio 
resources poses a major challenge in upcoming cooperative CIoT networks. 

2 Related Works 

In [15], the use of multi-antenna UAV-mounted relays and NOMA enhances IoT device 
performance. Results indicate better outcomes with more antennas, SNR, and fading severity 
compared to OMA schemes. In [16], the combination of UAVs and wake-up radios in remote 
IoT applications outperforms six benchmark routing protocols, enhancing network stability, 
energy efficiency, and data collection. In [17], an optimized UAV formation tracking using deep 
reinforcement learning and the proposed DIDDPG algorithm for communication delay 
mitigation. In [18], using UAVs to deploy small cells in hard-to-reach areas for wireless 
coverage, focusing on optimizing energy use through efficient scheduling. In [19], enhancing 
performance in simulations is achieved by employing a strategy involving deep reinforcement 
learning for offloading UAV tasks in power inspection to mobile edge computing servers. In 
[20], an energy-efficient optimization method for deploying UAVs in IoT data collection uses 
new encoding for stop points and combines DEoPS and GBoPS techniques. Results show each 
excels in different areas. In [21], a novel cross-layer computing framework combined with a 
deep learning-based offloading algorithm enhances performance in power IoT by as much as 20. 
73%. In [22], improving IoUT communication with deep reinforcement learning, integrating 
renewable energy, reducing hops, and addressing interference challenges. In [23], developing a 
cooperative UAV-assisted task offloading system can optimize energy efficiency and task 
distribution in disaster areas. Simulation results show significant energy savings and improved 



performance. In [24], a UAMS for 6G networks balances costs and service needs, enhances 
migration efficiency, and improves system performance. 

In [25], the utilization of blockchain technology in UAV-assisted IoT data collection 
systems bolster security and improves energy efficiency. Unmanned Aerial Vehicles function as 
edge nodes, utilizing charging tokens for recharging purposes and employing an adaptive linear 
prediction algorithm to decrease energy usage. The simulation results confirm the effectiveness 
of the system. In [26], the algorithm enhances resource management and pricing within a BaaS-
MEC system through facilitating information exchange among base stations. It employs a 
combination of hierarchical reinforcement learning techniques, including deep Q-learning and 
Bayesian deep learning, to achieve convergence. In [27], methods are proposed to enhance data 
rates in molecular communication by utilizing multiple emitters and detectors with algorithms. In 
[28], a routing protocol designed for UAVs in IoT applications that focuses on energy efficiency 
seamlessly combines extensive data aggregation with rapid point-to-point communication. In 
[29], a UAV-enabled MEC network structure uses a cooperative computation offloading scheme 
with interference mitigation. In the IoT environment, deep reinforcement learning improves 
utility by optimizing offloading decisions and resource management. In [30], a novel UAV-
centered IoT network has been suggested for effective data gathering and three-dimensional 
device locating. A DE-based optimization method minimizes energy consumption and improves 
performance compared to traditional networks. In [31], utilizing UAVs and delay-tolerant 
networking protocols enables data collection from IoT devices across extensive regions even 
without established infrastructure. A path planning algorithm is proposed for efficient UAV 
flight paths. In [32], energy efficiency optimization for UAV–based communication networks 
are the focus of this study, despite uncertainties. A convex optimization scheme with closed-
form resource allocation expressions is proposed, which performs well in simulations. In [33], a 
NOMA-based cognitive UAV communication system to tackle spectrum scarcity with a joint 
optimization algorithm. In [34], a reconfigurable intelligent surface, known as RIS, enhances a 
UAV-assisted cognitive radio system by mitigating blocked line-of-sight channels. Enhancing 
achievable rates for secondary receivers is improved by optimizing UAV trajectory, transmit 
power, and RIS phase shifts. The simulation has verified its effectiveness. 

In [35], the goal of secure RSMA cooperation schemes for maritime cognitive UAV 
networks is to optimize transmission rate, considering primary privacy and quality of service. A 
CPFS algorithm improves the transmission rate compared to traditional schemes. In [36], energy-
harvesting UAVs combine with CR tech for dependable communication. Analytics on residual 
energy, connection outages, and secrecy outages are developed. Optimization problems are 
posed, and simulations validate the results. In [37], improving post-disaster surveillance using 
UAVs and CRN focuses on optimizing transmission power and data rate while addressing 
interference. Proposed algorithms exceed random power selection for higher data rates. In [38], 
utilizing a multi-agent reinforcement learning framework to enhance channel allocation in 
cognitive UAVs. Using UCB-H and DDQN, it shows improved network performance. In [39], a 



cognitive IoT system makes use of UAVs equipped with energy harvesting capabilities to act as 
relays, enhancing communication between a satellite source and IoT devices. A multi-objective 
optimization framework with the Outer Approximation Algorithm outperforms NOMAD. In 
[40], an energy-efficient UAV-based cognitive radio network that adjusts transmission power 
based on primary user sensing and energy harvesting using compound Poisson 
distribution. Optimized resource allocation is achieved with Lagrange duality, resulting in 
significant energy efficiency gains. In [41], the swapping method optimizes UAV deployment in 
disaster operations, improving connectivity, coverage, and network lifespan in high-pressure 
situations. 

3 Proposed DICOT-CUAV Models 

3.1 UAV-CRN Network Model 

This paper delves into an EH-UAV-CRN comprising a secondary network (SN) and a 
primary network (PN), which includes a pair of transmitters and receivers. The SN possesses a 
flying UAV known as ST, along with a designated receiver named SR. The SN can use PN's 
licensed spectrum for transmitting data. The user's location is conveniently represented through a 
three-dimensional Cartesian coordinate system. The aircraft ST navigates smoothly in a circular 
path at a height of H, maintaining a radius of R with its center positioned at 𝑥𝑥𝑆𝑆𝑆𝑆

(0),𝑦𝑦𝑆𝑆𝑆𝑆
(0),𝐻𝐻. Flight 

speed is represented by the symbol V, and the position of ST can be determined at any given 
time t. The angle of flight for ST is symbolized as 𝑉𝑉𝑉𝑉

𝑅𝑅
. We can infer that PT is located at 

(𝑥𝑥𝑃𝑃𝑆𝑆,𝑦𝑦𝑃𝑃𝑆𝑆 , 0) and PR is positioned at (𝑥𝑥𝑃𝑃𝑅𝑅,𝑦𝑦𝑃𝑃𝑅𝑅 , 0). Moreover, we can also presume that SR 
remains stationary at coordinates (𝑥𝑥𝑆𝑆𝑅𝑅, 𝑦𝑦𝑆𝑆𝑅𝑅 , 0). Consequently, the distances from ST to SR and 
from ST to PR can  
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In the same way, the distances for the connections between ST-PT and PT-SR can be outlined as 
follows. 
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In the figure 2. The UAV in CRN employs the standard frame design with each time slot 
comprising a sensing period τ and a transmission sub-slot 𝑇𝑇 −  𝜏𝜏. It should be noted that in this 
study, a frame refers to the duration of one UAV flight. Therefore, the duration of one frame 
can be expressed as 

𝑇𝑇 = 2𝜋𝜋𝑅𝑅
𝑉𝑉

                                                                                                                                          (6) 

Initially, the UAV detects the condition of the primary transmitter (PT) during the 
sensing period and then establishes communication with the secondary receiver (SR) in the 
transmission sub-slot. The suggested approach involves integrating UAVs into cognitive radio 
networks (CRN) to facilitate operations in diverse scenarios. For instance, UAVs could be 
utilized for environmental monitoring by gathering data from ground nodes and relaying it to 
control centers or other UAVs for seamless communication. The channel gains denoted as 
𝑔𝑔𝑝𝑝𝑝𝑝� ,𝑔𝑔𝑝𝑝𝑝𝑝� ,𝑔𝑔𝑝𝑝𝑝𝑝�  𝑎𝑎𝑅𝑅𝑎𝑎 𝑔𝑔𝑝𝑝𝑝𝑝�  represent PT-ST, ST-SR, ST-PR, and PT-SR connections, respectively. To 
streamline the processing, we view each frame as representing a shading state. Considering the 
influence of weather and various unpredictable elements on the communication quality of a 
UAV, we investigate its communication performance under prolonged fading conditions. During 
a shading state, all connected links undergo block fading, where the channel state stays constant 
within a frame but switches between frames. The LOS links, specifically ST-PR, ST-PT, and ST-
SR, are represented by a blend of small-scale fading and propagation loss in their modeling. 

𝑔𝑔𝑥𝑥� = |𝑔𝑔𝑥𝑥|�
𝜌𝜌0
𝐷𝐷𝑥𝑥2

                                                                                                                              (7) 

Consider x as a collection containing 𝑝𝑝𝑝𝑝, 𝑅𝑅𝑅𝑅, 𝑎𝑎𝑅𝑅𝑎𝑎 𝑅𝑅𝑝𝑝. The variable |𝑔𝑔𝑥𝑥| is established as a 
complex Gaussian random variable with an average value of zero and a variance of one. This 
variable considers the differences in signal strength between the main node (ST) and all the other 
nodes located on the ground. The symbol 𝜌𝜌0 denotes signal attenuation for every unit of distance, 

and the expression �
𝜌𝜌0
𝐷𝐷𝑥𝑥2

 demonstrates how much path propagation is influenced by the Euclidean 

distance separating ST and ground nodes as per equations 2-4. The remaining ground-to-ground 
channels exhibit characteristics of Rayleigh fading. Within this context, the symbol α signifies 
the factor that describes the attenuation of signal intensity as distance increases, while 𝑔𝑔𝑝𝑝𝑝𝑝 
denotes the variations in signal strength caused by sudden environmental changes. The direct 
distance between the transmitter and receiver is referred to as 𝐷𝐷𝑝𝑝𝑝𝑝 in a point-to-point link. 
Moreover, it is understood that the primary user's signals are characterized by complex phase-
shift keying (PSK), whereas the noise received by the secondary receiver is circularly symmetric, 
following a Gaussian distribution with zero mean and unit variance. Spectrum sensing refers to 
the process of identifying the frequencies that are currently accessible. When a UAV has access 
to the same spectrum as a primary user (PU), there may be interference if both users are present. 
To avoid this, the secondary user (ST) needs to sense the spectrum and determine when it is safe 



to use the authorized band. Where the UAV uses an energy detection (ED) method to assess the 
presence of a PU, resulting in a binary hypothesis test. 

The value of n represents the n-th sample of PT's signal, while 𝑦𝑦(𝑅𝑅) represents the 
signals received by the UAV. The signal sent by PT is denoted as 𝑅𝑅(𝑅𝑅), and the n-th noise 
sample is represented as 𝑝𝑝(𝑅𝑅). The spectrum sensing result using energy detection (ED) is 
expressed as 𝑇𝑇(𝑦𝑦) = 1

𝑓𝑓𝑠𝑠𝜏𝜏
∑ |𝑦𝑦(𝑅𝑅)|2𝑓𝑓𝑠𝑠𝜏𝜏
𝑛𝑛=1 , where fs is the sample frequency. It is important to point 

out that since the connection between ST and PT is a dependable line-of-sight (LoS) link, any 
possible fading effects on the UAV's sensing decisions can be disregarded. Hence, when 
employing an ED strategy, the calculation of detection probability and false alarm probability 
can be done in the following manner. 

𝑃𝑃𝑑𝑑(𝜏𝜏, 𝜀𝜀) = 𝑄𝑄 �( 𝜀𝜀
𝑁𝑁0
− 𝛾𝛾 − 1)� 𝜏𝜏𝑓𝑓𝑠𝑠

2𝛾𝛾+1
�                                                                                               (8) 

𝑃𝑃𝑓𝑓(𝜏𝜏, 𝜀𝜀) = 𝑄𝑄�� 𝜀𝜀
𝑁𝑁0
− 1��𝜏𝜏𝑓𝑓𝑝𝑝�                                                                                                     (9) 

In this situation, the symbol ε signifies the minimum detectable level of Emergency 
Department (ED) detection, while γ represents the ratio of signal strength to noise received by 
the UAV. 𝑄𝑄(. ) is the inverse of the standard Gaussian distribution function, symbolized as 
1

√2𝜋𝜋
∫ exp (−𝑡𝑡2/2𝑢𝑢
0 )𝑎𝑎𝑡𝑡. Additionally, a predetermined threshold 𝑃𝑃𝑑𝑑��� is set to ensure complete 

protection of the primary user from interference. As a result, 𝑃𝑃𝑓𝑓(𝜏𝜏, 𝜀𝜀) can be reevaluated using 
this information. In the allocated time for transmission, the UAV can regulate its transmission 
strength based on its sensing results. This means that when the primary user (PU) is not in use, 
the UAV will transmit with greater power, denoted as 𝑃𝑃𝑝𝑝

(0), while it will use lower power, 
denoted as 𝑃𝑃𝑝𝑝

(1), if the PU is detected as occupied. By doing so, the UAV can efficiently utilize 
the licensed spectrum and prevent any major interference with the PU. However, due to 
limitations in spectrum sensing technology, such as shadowing and fading, there may be errors in 
the sensing process. As a result, there are four possible scenarios depending on the sensing 
results and status of the PU. The primary user (PU) is not in use and the unmanned aerial vehicle 
(UAV) can detect it correctly with a probability of 𝑎𝑎0, which is equal to the probability of the PU 
being inactive 𝐻𝐻0 multiplied by the probability of false detection 𝑃𝑃𝑓𝑓. The SU's rate at 

that moment is 𝑟𝑟00 = 𝑙𝑙𝑅𝑅𝑔𝑔2(1 + 𝑔𝑔𝑠𝑠𝑠𝑠� 𝑃𝑃𝑠𝑠
(0)

𝑁𝑁0
). The primary user's status is currently inactive; however, 

the unmanned aerial vehicle incorrectly detects it as busy with a chance of 𝑎𝑎1 = 𝑃𝑃(𝐻𝐻0)𝑃𝑃𝑓𝑓. 

Furthermore, the current data rate of the secondary user is 𝑟𝑟01 = 𝑙𝑙𝑅𝑅𝑔𝑔2(1 + 𝑔𝑔𝑠𝑠𝑠𝑠� 𝑃𝑃𝑠𝑠
(1)

𝑁𝑁0
). The primary 

user is currently occupied, however, there is a possibility that the unmanned aerial vehicle may 
falsely detect it with a probability of 𝛽𝛽0, which is equal to the probability of the primary user 



being present 𝑃𝑃(𝐻𝐻1) multiplied by the probability of detection (1− 𝑃𝑃𝑑𝑑). The SU's instantaneous 

rate can be represented as 𝑟𝑟10 = 𝑙𝑙𝑅𝑅𝑔𝑔2 �1 + 𝑔𝑔𝑠𝑠𝑠𝑠� 𝑃𝑃𝑠𝑠
(0)

𝑃𝑃𝑝𝑝𝑔𝑔𝑝𝑝𝑠𝑠+𝑁𝑁0
�. The primary user is occupied and the 

unmanned aerial vehicle correctly identifies this with a probability of 𝛽𝛽1 = 𝑃𝑃(𝐻𝐻1)𝑃𝑃𝑑𝑑. The current 

speed of the secondary user is 𝑟𝑟11 = 𝑙𝑙𝑅𝑅𝑔𝑔2 �1 + 𝑔𝑔𝑔𝑔�𝑃𝑃𝑠𝑠
(1)

𝑃𝑃𝑝𝑝𝑔𝑔𝑝𝑝𝑠𝑠+𝑁𝑁0
�. In this context, 𝑃𝑃(𝐻𝐻0) refers to the 

likelihood of the primary user (PU) being idle, while 𝑃𝑃(𝐻𝐻1) represents the probability of the PU 
being busy. The initial number in the instantaneous rate indicates the actual state of the PU (0: 
available; 1: occupied), while the second number shows the detection outcome by the unmanned 
aerial vehicle (UAV) (0: not present; 1: present). 

3.2 UAV Data Transmission 

This section of the text details the creation and design journey for the Decision-based 
Routing for Unmanned Aerial Vehicles and the Internet of Things (DR-UAV IoT) routing 
solution, which is crafted upon distinct decision criteria. The solution involves two primary 
phases: directing data between UAV nodes and transmitting data from UAVs to IoT 
infrastructure devices. It functions as a tool for determining how data should be routed, 
especially when the ground network is crowded and unable to send data to the decision center or 
main servers. The IoT infrastructure is responsible for gathering and transmitting data to UAV 
nodes, which subsequently relay it to cloud or backbone devices to enhance decision-making 
processes. The development of the two primary modules in this solution was carefully crafted 
through a series of steps. The initial module emphasizes UAV-to-UAV communication, 
facilitating data routing among UAV nodes. On the flip side, the second module leverages the 
proposed solution to collect data from base stations (BS) and integrate it with the IoT network 
situated on the ground. Usually, BS is well-equipped with ample resources such as bandwidth, 
transmission power, and coverage. This module makes use of location services for 
communication between nodes. These services strive to acquire precise and current node 
locations. Moreover, the DR-UAV IoT system utilizes location services to enhance the 
functionality of IoT network services. UAV nodes are present in the network to support IoT 
networks, whether in densely populated or sparsely populated network environments. Over time, 
this solution accurately assesses ground network density by measuring distances among UAV 
nodes and pinpointing areas with heavy traffic through the exchange of brief messages. 
Furthermore, battery power levels are also checked by UAVs before participating in data 
collection activities; priority is given to drones with ample battery power. Figure 1 illustrates the 
components of a drone. 



 

Figure 1 – Essential Parts of a Drone. 

The control station, also known as the BS, plays a crucial role in managing IoT and UAV 
traffic. Its main function is to support the network and enable strong transmission and receiving 
capabilities. This can be a difficult task as UAVs and IoT nodes often face challenges in 
communication due to limited ad hoc networks. The BS helps overcome these limitations by 
providing support to enhance the network and adjust channel conditions and paths for UAVs and 
nodes. However, data collection can still be a challenge if the BS does not meet network 
requirements. In order to reduce interference, every base station function on a designated 
frequency, with its communication coverage dictated by the size of the cell. Furthermore, the 
Base Station is connected to a central entity called the mobile telecommunication switching 
office to facilitate additional data analysis. In this section, we utilize the suggested routing 
approach for the transmission of data. The module is structured around two primary phases: 
UAV-to-IoT and UAV-to-UAV data routing. During the initial phase, data is gathered from IoT 
networks on the ground, with the nodes' positions being pinpointed through GPS technology. 
The UAV employs a routing strategy to pinpoint a designated area, like a stadium, field, or 
disaster site, by utilizing up-to-date data on node density in the ground IoT network. This is 
accomplished by the innovative DR-UAV IoT protocol, which initially collects data on node 
density from a centralized IoT infrastructure. Next, every UAV node identifies the connectivity 
factor and chooses the appropriate region for data gathering. In order to assess node density, the 
solution employs pre-segmented fixed zones that have a communication range of 250 meters. 
Every UAV node ensures full coverage of its assigned area while keeping data up-to-date 
through the exchange of Hello packets with IoT nodes located on the ground. This guarantees 
that each UAV node possesses a current routing table that relies on details regarding node 
density. Figure 2 showcases the exchange of Hello packets happening at ground level. 



 

Figure 2 – Estimating the Density of IoT Network Nodes using Unmanned 
Aerial Vehicles (UAVs) 

The UAV updates the routing table by recording the number of nodes and their 
corresponding locations within the designated zone. Equation (1) demonstrates the calculation of 
the total number of IoT nodes in the selected area. 

𝐼𝐼𝑅𝑅𝑇𝑇𝑁𝑁𝑁𝑁𝑑𝑑𝑁𝑁(𝑇𝑇𝑅𝑅𝑡𝑡𝑎𝑎𝑙𝑙𝑍𝑍𝑁𝑁𝑛𝑛𝑁𝑁𝑝𝑝) = ∑ 𝐼𝐼𝑅𝑅𝑇𝑇𝑁𝑁𝑁𝑁𝑑𝑑𝑁𝑁(𝐴𝐴𝑟𝑟𝐴𝐴𝑎𝑎)|𝑆𝑆𝑁𝑁𝑉𝑉𝑇𝑇𝑇𝑇𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑠𝑠|
𝑖𝑖=1                                                              (10) 

The |𝑇𝑇𝑅𝑅𝑡𝑡𝑎𝑎𝑙𝑙𝑍𝑍𝑁𝑁𝑛𝑛𝑁𝑁𝑝𝑝| signify the total number of zones in a particular region, while the 
𝐼𝐼𝑅𝑅𝑇𝑇𝑁𝑁𝑁𝑁𝑑𝑑𝑁𝑁(𝐴𝐴𝑟𝑟𝐴𝐴𝑎𝑎) refers to the quantity of nodes existing in the IoT network. Moreover, the level 
of connectivity plays a vital role in the proposed protocol, established through the analysis of 
density data collected from the BS. The UAV nodes make use of the density table to evaluate the 
connectivity level and calculate it accordingly. This table presents data on node density obtained 
from the information collected by the BS. The DR-DR-UAV IoT protocol's design depends on 
the BS for connectivity and as a key infrastructure for providing services. Figure 3 provides a 
visual representation of the communication flow among the Base Station, UAVs, and IoT nodes. 
The BS degree plays a vital role in supporting data communication within IoT networks that rely 
on various communication technologies and standards. Its primary role is to offer 
communication services to both IoT nodes and UAV nodes. The Bright Star is fully furnished 
with essential resources like batteries, processing units, storage devices, and robust long-range 
receiver and transmission tools. We make use of GSM IoT (EC-GSM-IoT) services to send data, 
as it effectively saves energy and enables long-range communication for IoT devices, serving as 
a low-power wide area network technology. Numerous studies have shown how effective GSM 
IoT service is when compared to alternative standards such as Wi-Fi and cellular networks. The 
transmission range and coverage area of UAVs depends on the density of nodes present on the 
ground. Additional transmission power is needed for nodes in an IoT network with more nodes 
than UAVs to facilitate data sensing and collection, while microcells support the transmission 



power requirements for UAVs. Algorithm 1 details the steps involved in linking UAVs to an IoT 
network. 

 

Figure 3 – The communication distance of every element within the network 

Algorithm 1 (UAV-to-IoT) 
Input: CUAV: The potential unmanned aerial vehicle (UAV) point 
Output: The density of nods in IoT network 

1. IoT: Internet of Things network point 
2. If (Data on traffic density is received from the IoT network through a base station) 
3. Then (Establish coordinates using location service) Else 
4. Transmit broadcast messages to assess the node density within the IoT network. 
5. If congestion is identified within the IoT network. 
6. Gather information from the IoT network. 
7. Alternatively, wait for a random interval before repeating the procedure. 
8. End task  
9. Find out the distance and then travel to the designated destination. 
10. End if  
11. End process  

The beginning of the UAV-to-UAV data communication process occurs during the 
second module. This entails the exchange of information among the drones' nodes to monitor 
ground updates and status. In this phase, a responsive routing strategy is utilized, allowing the 
protocol to create routing paths as required. The primary goal of this module is to identify nearby 
and nearest UAV nodes for seamless connectivity. Nevertheless, the network cannot ensure 
uninterrupted data transmission due to the frequent disconnections caused by the high mobility 
of UAVs. The suggested DR-UAV IoT protocol effectively tackles this concern by enabling 
decisions and exploring alternative pathways without the need to restart the discovery process. In 
order to establish a connection smoothly, the UAV node initiates by updating its routing table to 
include details regarding the locations of the source (IoT nodes) and destination (Main Center 



devices). Subsequently, by utilizing additional interconnected UAV nodes in the sky, a routing 
path is established towards the intended destination to efficiently relay data. The Route Request 
Packet (RREP) is utilized to keep this route updated. After gathering all data from IoT nodes, it 
is then seamlessly transmitted to the central hub, strategically positioned according to network 
specifications. For example, in a sports stadium setting, the central command would typically be 
in the control room. The RREP packets consistently seek direct link nodes for transmitting data 
packets. Figure 4 showcases the RREP process between UAV-to-UAV nodes. 

 

Figure 4 - The procedure for sending route reply messages between unmanned aerial vehicles 
(UAVs) is known as the RREP process. 

Algorithm 2 outlines how data communication occurs among UAV-to-UAV nodes 
using RREQ packets. 
Input: communication between UAVs 
Output: to achieve the destination of RREQ 

1. Begin by initializing the process. 
2. Designate a UAV node as the candidate (CUAV). 
3. Create a Route Request Packet (RREQ). 
4. If the UAV receiving the RREQ is the same as the CUAV, disregard the request. 
5. Otherwise, proceed to step 6. 
6. If the destination of the RREQ is the same as the CUAV, select a route. 
7. Otherwise, wait for a random time and repeat the process. 
8. Record that the RREQ was received by the CUAV. 
9. Add the RREQ to be rebroadcasted later. 
10. Rebroadcast the RREQ to other UAVs. 
11. End the if process. 
12. End of process flow. 

The RREQ packet includes important information such as the identification numbers of 
the source and destination UAVs, a unique RREQ ID, and data regarding the latitude and altitude 
of the UAV. To avoid network overload, a suggested approach includes combining the use of 



UAV-ID with an RREW message. If the UAV node receives the same identification number, it 
will ignore it. The route reply (RREP) messages are later dispatched from the immediate UAV 
node to acknowledge receipt to the source UAV node. Subsequently, a routing decision is 
reached as nodes share route information for a predetermined duration. Once this period elapses, 
all RREQ messages will be discarded. 

3.3 Channel Model 

The location of the UAVs is given by 𝑋𝑋𝑚𝑚 ,𝑌𝑌𝑚𝑚 ,𝐻𝐻𝑚𝑚 , while the IoT device is represented by 
(𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 , 0). This means that the distance between them can be calculated as  

𝑎𝑎𝑖𝑖𝑚𝑚 = �(𝑋𝑋𝑚𝑚 − 𝑋𝑋𝑖𝑖)2 + (𝑌𝑌𝑚𝑚 − 𝑌𝑌𝑖𝑖)2                                                                                          (11) 

Each minor affected region is thought to be monitored by a single drone that operates 
within the specified service range assigned to it. If the IoT device sends a task to drone M, it 
needs to be positioned within the drone's coverage area. The UAV's maximum coverage radius is 
established by the parameter 𝑎𝑎𝑚𝑚𝑇𝑇𝑥𝑥. Communication between the IoT device and drone takes 
place wirelessly. To prevent any disruption, IoT devices utilize FDMA to offload computing 
tasks onto drones. When an IoT device and drone are communicating, the drone will fly near the 
ground, ensuring a direct line of sight with minimal signal interference. The data rate for the 
uplink can be determined by the variable r. The channel bandwidth between the IoT device and 
the UAV is denoted as 𝜔𝜔𝑢𝑢, with 𝑔𝑔𝑖𝑖,𝑚𝑚  representing the uplink channel gain. The symbol 𝜎𝜎2 
indicates the strength of additive white Gaussian noise (AWGN), while pi stands for the 
transmission power of the channel. The term 𝑔𝑔0 denotes the channel gain of the reference 
channel, whereas 𝑎𝑎𝑖𝑖,𝑚𝑚2 + 𝐻𝐻𝑚𝑚2  signifies the Squared Euclidean Distance from the IoT device to the 
UAV. The distance separating the UAV and LEO satellite enables the satellite to access the 
communication window only when α reaches 20 or above, without factoring in any other 
influences. The positions of the UAVs are designated as 𝑋𝑋𝑗𝑗,𝑌𝑌𝑗𝑗 ,𝐻𝐻𝑗𝑗. The geocentric angle 𝜃𝜃𝑚𝑚𝑗𝑗 
measures the angle between Earth-based IoT devices and satellites. The Earth's radius is 
symbolized as R, with the UAV's height indicated by 𝐻𝐻𝑚𝑚. The satellite's altitude is represented 
by 𝐻𝐻𝑗𝑗 and α represents the horizontal angle between the UAV and the satellite. The peak value of 
the communication window θ is achieved at α being 20. To determine the distance, you can use 
the following calculation method. 

𝜃𝜃𝑚𝑚𝑗𝑗 = arccos �𝑅𝑅+𝐻𝐻𝑚𝑚
𝑅𝑅+𝐻𝐻𝑗𝑗

𝑅𝑅𝑅𝑅𝑅𝑅𝛼𝛼𝑗𝑗� − 𝛼𝛼𝑗𝑗                                                                                             (12) 

𝐻𝐻𝑚𝑚𝑗𝑗 = �(𝑅𝑅 + 𝐻𝐻𝑚𝑚)2 + (𝑅𝑅 + 𝐻𝐻𝑗𝑗)2 − 2𝑅𝑅(𝑅𝑅 + 𝐻𝐻𝑚𝑚)𝑅𝑅𝑅𝑅𝑅𝑅𝜃𝜃𝑚𝑚𝑗𝑗                                                      (13) 

As stated in 3GPP Release15, an extra change in frequency caused by the movement of 
satellites must be considered by using the following equation: 



𝑓𝑓𝑗𝑗 ,𝑚𝑚 = (𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠
𝐶𝐶

) × �𝑅𝑅+𝐻𝐻𝑚𝑚
𝑅𝑅+𝐻𝐻𝑗𝑗

cos𝛼𝛼�× 𝑓𝑓𝑚𝑚,𝑗𝑗                                                                                        (14) 

The velocity of the satellite is denoted as 𝑝𝑝𝑝𝑝𝑇𝑇𝑉𝑉, while c represents the speed of light, and 
𝑓𝑓𝑚𝑚,𝑗𝑗 symbolizes the carrier frequency at the transmitter. The formula calculates the transmitting 
gain of the drone antenna and the receiving antenna gain of the satellite. The performance level 
of the antenna is denoted by φ, where Ω𝑚𝑚  𝑎𝑎𝑅𝑅𝑎𝑎  Ω𝑗𝑗 are the dimensions of the antennas on the 
reflecting surfaces of the UAV and satellite, respectively. The symbol 'c' represents the speed of 
light. The channel coefficient pertaining to the UAV-LEO channel. The variables 𝑢𝑢𝑚𝑚𝑗𝑗  𝑎𝑎𝑅𝑅𝑎𝑎 𝑙𝑙𝑚𝑚𝑗𝑗  
represent the path loss factor. More precisely, the formula for path loss factor is denoted as 

𝑢𝑢𝑚𝑚𝑗𝑗 = �4𝜋𝜋𝐻𝐻𝑚𝑚,𝑗𝑗

𝜆𝜆𝑚𝑚,𝑗𝑗
�
2
, in which 𝜆𝜆𝑚𝑚,𝑗𝑗 = 𝑅𝑅/𝑓𝑓𝑚𝑚,𝑗𝑗. The data rate of the uplink channel can be determined 

using the Shannon formula, with Q denoting the Rician fading factor. The symbol |𝑙𝑙�̅�𝑚,𝑗𝑗 | denotes 
the line-of-sight (LoS) element having a value of 1, while 𝑙𝑙�̅�𝑚,𝑗𝑗  signifies the non-line-of-sight 
(NLOS) component, which adheres to a sophisticated Gaussian distribution with an average of 0 
and a variability of 1. B indicates the frequency range used to establish the connection between 
the UAV and the satellite, 𝑃𝑃𝑚𝑚,𝑗𝑗 represents the transmission power of the UAV's uplink, and 𝑁𝑁0 
denotes the spectral density of noise power. 

3.4 Data Offloading and Computing 

The ground equipment transfers the task to the UAV, which then delivers the task block 
𝑆𝑆𝑖𝑖 through the UAV to 𝑙𝑙𝐴𝐴𝑅𝑅𝑗𝑗 for processing. 𝑎𝑎𝑖𝑖𝑗𝑗 = 1 is used to show that 𝑙𝑙𝐴𝐴𝑅𝑅𝑗𝑗 can process the task, 
while vice versa indicates that the task 𝑆𝑆𝑖𝑖 is not given to 𝑙𝑙𝐴𝐴𝑅𝑅𝑗𝑗 for processing. The time it takes for 
an IoT device to transfer the task 𝑆𝑆𝑖𝑖 to a UAV through the channel involves two types of delay: 
transmission and propagation. These delays denoted as 𝑇𝑇𝑖𝑖𝑚𝑚𝑉𝑉𝑡𝑡𝑇𝑇𝑛𝑛 𝑎𝑎𝑅𝑅𝑎𝑎 𝑇𝑇𝑖𝑖𝑚𝑚

𝑝𝑝𝑡𝑡𝑁𝑁𝑝𝑝, respectively, can be 
calculated using the equation. 

𝑇𝑇𝑖𝑖𝑚𝑚𝑉𝑉𝑡𝑡𝑇𝑇𝑛𝑛 = 𝑆𝑆𝑖𝑖
𝑡𝑡𝑖𝑖𝑚𝑚

,𝑇𝑇𝑖𝑖𝑚𝑚
𝑝𝑝𝑡𝑡𝑁𝑁𝑝𝑝 = 𝑑𝑑𝑖𝑖𝑚𝑚

𝑐𝑐
                                                                                                         (15) 

The speed of light is represented by the variable c. This formula can be used to express 
the time difference between the IoT device and the drone. 

𝑇𝑇𝑖𝑖𝑚𝑚 = 𝑇𝑇𝑖𝑖𝑚𝑚𝑉𝑉𝑡𝑡𝑇𝑇𝑛𝑛 + 𝑇𝑇𝑖𝑖𝑚𝑚
𝑝𝑝𝑡𝑡𝑁𝑁𝑝𝑝                                                                                                              (16) 

The amount of energy used by the device to communicate with the drone is computed as. 

𝐸𝐸𝑖𝑖𝑚𝑚 = 𝜔𝜔𝑢𝑢𝑇𝑇𝑖𝑖𝑚𝑚                                                                                                                         (17) 

In the communication path between the UAV and LEO, the time it takes to transfer task 
𝑆𝑆𝑖𝑖 from the UAV to 𝑙𝑙𝐴𝐴𝑅𝑅𝑗𝑗 consists of three components: transmission delay 𝑇𝑇𝑖𝑖𝑚𝑚𝑉𝑉𝑡𝑡𝑇𝑇𝑛𝑛, propagation 
delay 𝑇𝑇𝑖𝑖𝑚𝑚

𝑝𝑝𝑡𝑡𝑁𝑁𝑝𝑝, and computation delay 𝑇𝑇𝐽𝐽. These can be described individually as follows. 



𝑇𝑇𝑚𝑚𝑗𝑗
𝑉𝑉𝑡𝑡𝑇𝑇𝑛𝑛 = 𝑆𝑆𝑖𝑖𝑗𝑗

𝑅𝑅𝑚𝑚𝑗𝑗
,𝑇𝑇𝑚𝑚𝑗𝑗

𝑝𝑝𝑡𝑡𝑁𝑁𝑝𝑝 = 𝐻𝐻𝑚𝑚𝑗𝑗

𝑐𝑐
,𝑇𝑇𝑗𝑗 = 𝑆𝑆𝑖𝑖𝑗𝑗𝛽𝛽

𝑓𝑓𝑖𝑖𝑗𝑗
                                                                                      (18) 

Task volume size transferred represented by 𝑆𝑆𝑖𝑖𝑗𝑗 , the Central Processing Unit requires 𝛽𝛽 
cycles to finish processing one unit of the task volume, while 𝑓𝑓𝑖𝑖𝑗𝑗  reflects the computation 
frequency allocated to 𝑆𝑆𝑖𝑖𝑗𝑗  by 𝑙𝑙𝐴𝐴𝑅𝑅𝑗𝑗. 

𝑇𝑇𝑚𝑚𝑗𝑗 = 𝑇𝑇𝑚𝑚𝑗𝑗
𝑉𝑉𝑡𝑡𝑇𝑇𝑛𝑛 + 𝑇𝑇𝑚𝑚𝑗𝑗

𝑝𝑝𝑡𝑡𝑁𝑁𝑝𝑝 + 𝑇𝑇𝑗𝑗                                                                                                      (19) 

The transfer of task volume from 𝑆𝑆𝑖𝑖𝑗𝑗  to 𝑙𝑙𝐴𝐴𝑅𝑅𝑗𝑗 is denoted by 𝑆𝑆𝑖𝑖𝑗𝑗 , while the CPU requires 𝛽𝛽 
process cycles to execute a single bit of this volume. Additionally, 𝑓𝑓𝑖𝑖𝑗𝑗  denotes the computing 
frequency allocated by 𝑙𝑙𝐴𝐴𝑅𝑅𝑗𝑗 for 𝑆𝑆𝑖𝑖𝑗𝑗 . The delay between the drone and the satellite is 
represented by 𝑆𝑆𝑖𝑖𝑗𝑗 . The energy consumption is comprised of two components: the energy 
required for transmitting data and the energy necessary for computing on the LEO satellite. The 
transfer energy consumption is determined by the equation. 

𝐸𝐸𝑚𝑚𝑗𝑗 = 𝑃𝑃𝑚𝑚𝑗𝑗𝑆𝑆𝑖𝑖𝑗𝑗
𝑅𝑅𝑚𝑚𝑗𝑗

                                                                                                                            (20) 

𝐸𝐸𝑗𝑗 = 𝑘𝑘𝑆𝑆𝑖𝑖𝑗𝑗𝛽𝛽𝑓𝑓𝑖𝑖𝑗𝑗2                                                                                                                           (21) 

𝑇𝑇 = 𝑇𝑇𝑝𝑝𝑡𝑡𝑁𝑁𝑝𝑝 + 𝑇𝑇𝑉𝑉𝑡𝑡𝑇𝑇𝑛𝑛 + 𝑇𝑇𝑗𝑗,   𝐸𝐸 = 𝐸𝐸𝑖𝑖𝑚𝑚 + 𝐸𝐸𝑚𝑚𝑗𝑗 + 𝐸𝐸𝑗𝑗                                                                       (22) 

The satellite's energy consumption is established based on the uplink power of UAV m, 
which is represented as 𝑃𝑃𝑚𝑚𝑗𝑗 in the equation provided. The energy factor, denoted as k, governs 
both the overall time delay (T) and complete energy consumption (E). 𝑇𝑇𝑝𝑝𝑡𝑡𝑁𝑁𝑝𝑝, or the overall delay 
in propagation time is determined by adding together the individual propagation delays 𝑇𝑇𝑝𝑝𝑡𝑡𝑁𝑁𝑝𝑝 =
𝑇𝑇𝑖𝑖𝑚𝑚
𝑝𝑝𝑡𝑡𝑁𝑁𝑝𝑝 + 𝑇𝑇𝑚𝑚𝑗𝑗

𝑝𝑝𝑡𝑡𝑁𝑁𝑝𝑝. Similarly, 𝑇𝑇𝑉𝑉𝑡𝑡𝑇𝑇𝑛𝑛 represents the total delay in transmission time, which can be 
calculated by combining the individual transmission delays 𝑇𝑇𝑉𝑉𝑡𝑡𝑇𝑇𝑛𝑛 = 𝑇𝑇𝑖𝑖𝑚𝑚𝑉𝑉𝑡𝑡𝑇𝑇𝑛𝑛𝑝𝑝 + 𝑇𝑇𝑚𝑚𝑗𝑗

𝑉𝑉𝑡𝑡𝑇𝑇𝑛𝑛 . 

3.5 UAV Operations 

The unmanned aerial vehicle effortlessly holds a consistent altitude referred to as z 
during its flight. In practical scenarios, the height is typically adjusted to the lowest feasible level 
to navigate around obstacles like buildings and trees effortlessly, minimizing the need for 
frequent adjustments in vertical positioning. The UAV's responsibilities can be divided into three 
main categories: movement, data transfer, and wireless power distribution. This implies that the 
controller directs the UAV to perform these operations during every time interval. UAV can 
either remain stationary or move to a nearby location using energies 𝐴𝐴𝐻𝐻  𝑎𝑎𝑅𝑅𝑎𝑎  𝐴𝐴𝑀𝑀 respectively. At 
the same time, there is a designated charging station for the UAV located at LC. Staying within 
close range of this charging location allows for frequent recharging of the UAV, ensuring it has 
enough energy to continue its tasks. The scenario poses a challenge for sensor nodes (SNs) 



situated at a distance from the charging station. In these situations, the SNs are unable to receive 
support from the UAV as they are unable to transmit collected data or be charged by it. This may 
lead to reduced lifespans for SNs and insufficient gathering of data. In order to tackle this 
concern, it is important for decisions regarding the UAV's movement to take into account not 
only its energy levels but also those of the SNs. 

The UAV acts as a bridge between the SNs and GW, enabling the merging of data. If the 
transmission of data to the GW directly upon receiving it from the SNs were to occur 
immediately, the device's energy would rapidly diminish. To prevent this, the UAV can combine 
data and delay transmission to the GW until it has accumulated a certain amount of data or is 
within proximity to the GW. This allows for simultaneous delivery of data in a single packet. 
However, excessive aggregation may result in obsolete data if the service update cycle ends 
before transmission to the GW. When making decisions about transmission operations, it is 
important to consider both the energy levels of the UAV and the service update cycle. For the 
efficient transfer of wireless power, it is presumed that the UAV employs a directional antenna 
set at a fixed angle. This implies that energy from the UAV can only be received by SNs 
positioned in matching locations on the ground plane with a location in the UAV plane. The 
energy consumption of the power transfer, denoted as 𝐴𝐴𝑝𝑝, is not required for Sensor Nodes (SNs) 
having ample energy reserves. Moreover, should the UAV find itself distant from its charging 
site and rely too heavily on wireless power transfer, it could face difficulty returning as a result 
of energy exhaustion. Hence, when making decisions about wireless power transfer, one should 
consider the UAV's current location and the energy levels of both the UAV and the SNs. The 
following section introduces a sophisticated Deep UAV algorithm, crafted to enhance 
movement, data transmission, and wireless power transfer all at once. In this algorithm, the 
controller consistently enhances the UAV's operations through online training, refining its 
policies via a process of trial-and-error learning. This is accomplished by integrating 
observational data from the state and experiential knowledge into a nonlinear function 
approximator, more precisely, a neural network. The neural network undergoes iterative training 
to equip the controller with nearly optimal decisions for every state. 

3.6 Throughput Aware Optimization 

The Whale Optimization Algorithm (WOA) emerged in 2016, drawing inspiration from 
the hunting techniques employed by humpback whales. This approach is designed to replicate 
the method used by humpback whales as they surround and follow their prey. The whales follow 
a two-stage process in their hunting activities, beginning with exploration and then moving on to 
exploitation. In the same manner, the WOA algorithm functions through two phases to navigate 
the search space effectively to find the best solutions. In the exploration stage, the algorithm sets 
its sights on the current best solution as its target prey. As the optimal solution is not known 
initially, the algorithm first considers the current leading candidate as the target and then directs 
other possible solutions represented as "whales" to modify their positions in the search space 



accordingly. Figure 5 beautifully illustrates the cooperative hunting technique of whales, 
commonly referred to as bubble-net feeding. Whales employ circular or "9"-shaped movements, 
releasing bubbles to assist their hunting maneuvers in this strategy. Further exploration of this 
behavior has revealed its capability to mimic problem-solving in optimization. The simulation 
explores the use of group searching, encircling, and pursuit techniques within a community of 
whales, offering valuable perspectives on innovative optimization strategies.  

 

Figure 5 - The act of bubble-net feeding performed by humpback whales 

If we consider a group of N whales in a search area defined by D dimensions, the location 
of each whale can be denoted as 𝑋𝑋𝑖𝑖 = (𝑋𝑋𝑖𝑖,1,𝑋𝑋𝑖𝑖,2, … ,𝑋𝑋𝑖𝑖,𝐷𝐷), where i represents their specific 
position in the group. When it comes to optimization, the whales are aiming to encircle their 
desired target prey by assessing the current best position within the group. This encourages them 
to shift their stances toward the optimal solution. This behavior assists in encircling the prey, and 
certain whales may also approach the most skilled individual for additional refinement. The 
repositioning process is directed by specific equations known as Eqs. Whales are prompted to 
gradually approach the target prey or the most suitable individual for encircling it in actions (23) 
and (24). The equations illustrate how the algorithm operates, showing how the whales navigate 
the search space to discover the most efficient solutions. The equations probably illustrate how 
solutions (UAV fog node coordinates) or "whales" adjust their positions around a hypothesized 
ideal solution, reflecting the algorithm's process of both exploring and exploiting to discover the 
best placement for UAVs. The vector 𝐷𝐷��⃗  represents the difference between the product of vector 
𝐶𝐶 and the most successful solution obtained at the current time (�⃗�𝑋 ∗), and the current solution 
�⃗�𝑋 (𝑡𝑡)𝑎𝑎𝑅𝑅𝑎𝑎 �⃗�𝑋(𝑡𝑡 + 1). It then refines the current solution based on D, adjusting it towards the 
optimal solution (�⃗�𝑋 ∗) at time t by applying coefficient vectors A and C. These coefficients are 
derived from specific equations (25) and (26) that incorporate vectors �⃗�𝑎 𝑎𝑎𝑅𝑅𝑎𝑎 𝑟𝑟. The calculation 
of 𝐴𝐴 𝑎𝑎𝑅𝑅𝑎𝑎 𝐶𝐶 is determined by these equations. 

𝐷𝐷��⃗ = |𝐶𝐶. ��⃗�𝑋 ∗�(𝑡𝑡)− �⃗�𝑋(𝑡𝑡)|                                                                                                     (23) 



�⃗�𝑋(𝑡𝑡 + 1) = ��⃗�𝑋 ∗�(𝑡𝑡) − 𝐴𝐴.𝐷𝐷��⃗                                                                                                  (24) 

𝐴𝐴 = 2�⃗�𝑎. 𝑟𝑟 − �⃗�𝑎                                                                                                                        (25) 

𝐶𝐶 = 2. 𝑟𝑟                                                                                                                                 (26) 

The vector �⃗�𝑎, gradually decreasing from 2 to 0 throughout iterations, holds significant 
importance in maintaining a balance between exploration and exploitation in the optimization 
process. In the same way, the random vector 𝑟𝑟, where values fall between 0 and 1, brings a touch 
of unpredictability to the Whale Optimization Algorithm. The element of randomness allows 
every search agent, depicted as a solution, to navigate through various positions across the search 
space. This investigation helps prevent the algorithm from becoming trapped in local optima, 
enabling a wider array of potential outcomes. Therefore, the relationship between vector �⃗�𝑎 and 𝑟𝑟 
vector has a significant impact on both exploration and exploitation throughout the optimization 
process. Additionally, WOA incorporates two foraging techniques inspired by humpback whales 
to facilitate the exploration of the best solutions. The Shrinking Encircling Mechanism draws 
inspiration from the bubble net technique famously employed by humpback whales and plays a 
pivotal role in the strategy of the WOA. The primary goal of this algorithm is to reduce the 
coefficient vector 𝐴𝐴 by lowering the value of �⃗�𝑎 (as demonstrated in Eq. 25 could you please 
rephrase the previous information smoothly. During this procedure, search agents adapt their 
positions towards a new location by striking a balance between their initial position and the most 
effective solution at present. This method emulates the concept of strategically surrounding and 
focusing on a promising solution. In the figure 6, we are presented with a visual representation 
illustrating the possible locations of a search agent as it moves from its starting coordinates 
(𝑋𝑋,𝑌𝑌) to a fresh position (𝑋𝑋’,𝑌𝑌’). This illustration clearly shows how the agent's position 
changes over iterations within a specific parameter space, influenced by both the shrinking of 
vector a and random values of vector 𝐴𝐴. 

 



Figure 6 - The most effective solution currently achieved is the Bubble-net search method (X∗). 

The algorithm utilizes a spiral motion to imitate the movement of humpback whales 
while foraging. The distance between the whales and the location of their prey, denoted as vector 
(𝐷𝐷��⃗ ), needs to be determined. The calculation of (27) is done to establish their location. By 
employing a spiral equation with variables such as b, influencing the spiral's shape, and a random 
number l, the agents' positions are smoothly adjusted along a path that elegantly traces a spiral 
pattern bridging their present whereabouts and the most optimal solution discovered thus far. 
This approach replicates the effective way whales navigate through search areas. The image 
depicted in the figure. In the seventh section, it is illustrated how this approach influences the 
way whales navigate around their prey. Their location gradually shifts using a probabilistic 
selection between two updating strategies: shrinking circles and spiral movement. 

�⃗�𝑋(𝑡𝑡 + 1) = 𝐷𝐷��⃗ . 𝐴𝐴𝑏𝑏1. cos(2𝜋𝜋𝑙𝑙) + �⃗�𝑋 ∗ (𝑡𝑡)                                                                                 (27) 

 

Figure 7 - The position is being updated in a spiral pattern 

Equation 28 employs probability-based selection to determine whether to use the 
mechanism is either referred to as the Shrinking Encircling Mechanism or the Spiral Updating 
Position and is structured in the following way:. 

�⃗�𝑋(𝑡𝑡 + 1) = � �⃗�𝑋 ∗ (𝑡𝑡) − 𝐴𝐴.𝐷𝐷��⃗  if 𝑝𝑝 < 0.5
𝐷𝐷��⃗ . 𝐴𝐴𝑏𝑏𝑇𝑇. cos(2𝜋𝜋𝑙𝑙) + �⃗�𝑋 ∗ (𝑡𝑡)if 𝑝𝑝 ≥ 0.5

                                                           (28) 

𝐷𝐷��⃗ = |𝐶𝐶. ��⃗�𝑋𝑡𝑡𝑇𝑇𝑛𝑛𝑑𝑑� − �⃗�𝑋|                                                                                                        (29) 

�⃗�𝑋(𝑡𝑡 + 1) = ��⃗�𝑋𝑡𝑡𝑇𝑇𝑛𝑛𝑑𝑑� − 𝐴𝐴.𝐷𝐷��⃗                                                                                                (30) 



The vector 𝐴𝐴 plays a crucial role in guiding the exploration phase of the Whale 
Optimization Algorithm (WOA). If magnitude of vector 𝐴𝐴 exceeds 1, it suggests that the 
algorithm is primarily inclined towards exploration. This phase focuses on refreshing the 
positions of the remaining search agents by considering the top solution discovered until now. 
Consequently, these search agents heavily depend on information obtained from the current best 
solution to direct their exploration within the search space. Therefore, the threshold of vector A 
plays a pivotal role in the algorithm by determining its exploration phase. It guarantees that once 
vector 𝐴𝐴 surpasses this limit, the emphasis remains on exploration. This guides the search agents 
to explore the search space effectively, drawing insights from the current optimal solution. 
Equations (29) and (30) embody a critical mathematical model that describes an exploration 
strategy in WOA. The vector �⃗�𝑋𝑡𝑡𝑇𝑇𝑛𝑛𝑑𝑑 symbolizes a solution chosen at random from the existing 
pool of potential solutions. In our current scenario, we harness the power of WOA to enhance the 
placement of UAV fog nodes. This process consists of several key stages. At first, a collective of 
whales is formed, where each whale symbolizes a prospective spot for a UAV fog node across 
the search region. These whales consistently venture into and utilize the search area, dedicating 
specific phases to each task. While exploring, whales choose the optimal current solution as their 
target prey and lead other whales to adapt their positions accordingly. During the exploitation 
phase, the whales elegantly circle their target prey, carefully selecting the best candidate for 
further refinement. Equations tailored for the Weighted Optimization Algorithm determine these 
position adjustments according to the exploration and exploitation phases. The process continues 
cycling until a specific termination condition is fulfilled, indicating that the best solution 
discovered signifies the most optimal arrangement of UAV fog nodes. To enhance clarity, a 
visual flowchart illustrating the optimization process has been provided for an easier 
understanding of the steps. 

Algorithm 3 – WOA 
Input: The best search agent 𝑋𝑋 ∗ from a population of whales 𝑋𝑋𝑖𝑖 (𝑤𝑤ℎ𝐴𝐴𝑟𝑟𝐴𝐴 𝑅𝑅 =  1, 2, . . . ,𝑅𝑅) 
 
Output: to Calculate fitness for a search agent 

1. Begin by establishing the population of whales. 
2. Evaluate the fitness of every search agent. 
3. The best search agent is represented by X∗.  
4. If the number of iterations remains below the maximum limit. 
5. For each search agent: 
6. Update parameters 𝑎𝑎,𝐴𝐴,𝐶𝐶, 𝑙𝑙, 𝑎𝑎𝑅𝑅𝑎𝑎 𝑝𝑝. 
7. If p is less than 0.5: 
8. If 2 multiplied by the absolute value of A is less than 1: 
9. Update the position of the current search agent using 𝐷𝐷��⃗ = |𝐶𝐶. ��⃗�𝑋 ∗�(𝑡𝑡)− �⃗�𝑋(𝑡𝑡)| 
10. End if statement. 
11. Else if 2 multiplied by the absolute value of A is greater than or equal to I: 



12. Select a random search agent 𝑋𝑋𝑡𝑡𝑇𝑇𝑛𝑛𝑑𝑑. 
13. Update the position of the current search agent using 𝐷𝐷��⃗ = |𝐶𝐶. ��⃗�𝑋𝑡𝑡𝑇𝑇𝑛𝑛𝑑𝑑� − �⃗�𝑋|. 
14. End if statement. 
15. End else statement. 
16. Else if p is greater than or equal to 0.5: 
17. Update the position of the current search agent using �⃗�𝑋(𝑡𝑡 + 1) = 𝐷𝐷��⃗ . 𝐴𝐴𝑏𝑏1. cos(2𝜋𝜋𝑙𝑙) + �⃗�𝑋 ∗ (𝑡𝑡). 
18. End if statement. 
19. End else statement. 
20. Verify whether any search agent has exceeded the search boundaries and make necessary 

adjustments to its position. 
21. Determine the fitness level of every search agent. 
22. If a more suitable solution is found, please make the necessary updates to X. 
23. Increment iteration counter t by 1. 
24. Return X∗ as the best solution found so far. 
25. End algorithm. 

3.7 Dynamic Intelligent Channel Assignment Model 

In this section, we will describe a single cycle of the DICOT-CUAV protocol, in which 
the deployed SNs are grouped into clusters. A UAV leads each cluster, functioning as a CH. It 
gathers data from its CMs and transmits it to the BS. Throughout every cycle, UAVs reach 
designated positions above the Area of Interest at a set altitude to maximize coverage of as many 
Sensor Nodes as feasible. Before utilizing unlicensed spectrum, the UAVs conduct a Clear 
Channel Assessment (CCA) to verify that the channel is available. Upon successful completion 
of the CCA process, the UAV swiftly transmits 𝑊𝑊𝑢𝑢𝐶𝐶𝑅𝑅 to the ground SNs, thus commencing the 
cluster formation. After their formation, SNs within each cluster transition into becoming CMs 
dedicated to a particular UAV. This marks the commencement of the steady-state phase, during 
which data is gathered from the SNs on the ground. Once the data collection process is finished, 
CMs have the option to enter sleep mode, indicating the end of a single cycle. In the beginning 
stage, we will elucidate the process of cluster formation for a lone UAV in a single round, as 
illustrated in Figure 8. Since the clusters do not overlap and operate independently, the identical 
approach is applied to each formation. At the start of every round, all ground sensor nodes are in 
sleep mode, with their mobile relays turned off. Nevertheless, the 𝑊𝑊𝑢𝑢𝑅𝑅𝑥𝑥 consistently stays 
powered on, ready and waiting to receive a Wireless Command (𝑊𝑊𝑢𝑢𝐶𝐶) from an UAV. When the 
SN's 𝑊𝑊𝑢𝑢𝑅𝑅𝑥𝑥 detects a 𝑊𝑊𝑢𝑢𝐶𝐶 from an incoming UAV that has completed CCA successfully, its 
MR is activated, a process that requires some time referred to as the mode switching time (MST). 
The SN proceeds with CSMA-CA protocol before transmitting a joining request as a response to 
the targeted UAV's 𝑊𝑊𝑢𝑢𝐶𝐶 signal. If several SNs receive the broadcasted WuC, each will attempt 
to send a separate joining request while they are in an active state. Nevertheless, collisions are 
bound to occur when transmitting these requests in reply to the 𝑊𝑊𝑢𝑢𝐶𝐶, as all SNs share channel 



access. To avoid collisions, we employ IEEE 802. 15. 4 non-beacon mode unslotted CSMA-CA 
to guarantee the successful transmission of joining requests from SNs to UAVs, as illustrated in 
the figure. It is crucial for the successful transmission of joining requests as this will determine if 
an SN will join in cluster formation. In unslotted non-beacon mode, CSMA-CA operates 
smoothly as each station gracefully adheres to a back-off algorithm. This involves patiently 
waiting for a random duration before assessing the channel's status. If the channel is unoccupied, 
the station can send its request to join. In case the channel is occupied, the station will increase 
its back-off counter and adjust the back-off exponent accordingly. The process keeps going until 
the station either reaches the maximum back-off attempts or successfully transmits its request. 
The likelihood of channel occupancy following CCA, known as γ, plays a crucial role in 
analyzing the behavior of CSMA-CA. This can be computed through two mathematical models: 
𝑀𝑀/𝐺𝐺/1 𝑎𝑎𝑅𝑅𝑎𝑎 𝑀𝑀/𝐺𝐺/1/2. In this study, we employ the 𝑀𝑀/𝐺𝐺/1/2 framework to ascertain the 
likelihood of a station being unable to join a cluster and consequently being excluded from 
participating in cluster formation, as expressed by. 

𝑃𝑃𝑑𝑑𝑡𝑡𝑁𝑁𝑝𝑝 = 𝛾𝛾𝑚𝑚𝑇𝑇𝑐𝑐𝑀𝑀𝑚𝑚𝑚𝑚𝐶𝐶𝑆𝑆𝑀𝑀𝑚𝑚 𝐵𝐵𝑇𝑇𝑐𝑐𝐵𝐵𝑁𝑁𝑓𝑓𝑓𝑓𝑝𝑝+1,                                                                                       (31) 

The probability of an SN being dropped and unable to participate in the current cluster 
formation for the UAV round is represented by 𝑃𝑃𝑑𝑑𝑡𝑡𝑁𝑁𝑝𝑝. The variable 𝑚𝑚𝑎𝑎𝑅𝑅𝑀𝑀𝐴𝐴𝑋𝑋𝐶𝐶𝑆𝑆𝑀𝑀𝐴𝐴𝑚𝑚𝑎𝑎𝑅𝑅𝑘𝑘𝑅𝑅𝑓𝑓𝑓𝑓𝑅𝑅 
represents the limit for the number of CCA attempts allowed. In cases where an SN faces 
difficulty transmitting a join request, it enters a sleep mode to preserve energy. It is important to 
mention that the research does not cover the modeling of CSMA-CA. Concurrently with the 
CSMA-CA process, the station carefully readies data packets for sending. This procedure takes 
place at every SN in the Field of Interest (FoI), where it includes identifying 
𝑊𝑊𝑢𝑢𝐶𝐶 𝑝𝑝𝑅𝑅𝑎𝑎 𝑡𝑡ℎ𝐴𝐴 𝑆𝑆𝑁𝑁′𝑅𝑅 𝑊𝑊𝑢𝑢𝑅𝑅𝑥𝑥, initiating the MR, generating data packets, executing CSMA-CA, 
and transmitting a request to join. The UAV gracefully accepts a connection request from every 
Sensor Node (SN). It then gracefully logs the Identity (ID) of each unique Sensor Node, marking 
them as Cluster Members (CMs) and allocating TDMA slots for their use. Consequently, a 
cluster is established where UAVs serve as Cluster Heads (CHs). This stage is commonly 
referred to as the setup phase, which is then succeeded by the steady-state phase. In the stable 
phase of DICOT-CUAV, a Sensor Node acting as a Cluster Member will receive a Time 
Division Multiple Access (TDMA) slot allocation from its Cluster Head, which is the Unmanned 
Aerial Vehicle (UAV). During this phase, the CM is tasked with transmitting its data packets 
within its allocated slot. After successfully sending the transmission, the UAV will promptly 
send an acknowledgment (ACK) to the ground station. Upon receiving the aacknowledgment the 
steady-state phase concludes, prompting the control module to deactivate its message receiver 
and transition into sleep mode, thus indicating the end of one cycle. The length and scheduling of 
each round are determined by the requirements of the application. Figure 8 elegantly presents a 
comprehensive overview of a singular round in the DICOT-CUAV routing protocol under 
consideration. The section labeled "Illustration of a single round of a UAV" within the dotted 
box visually details each step that occurs throughout this round. The figure is divided into two 



vertical boxes. On the left, we have "UAV-Aerial BS," illustrating processes at the UAV like 
CCA and 𝑊𝑊𝑢𝑢𝐶𝐶 transmission. On the right, we find "Ground Sensor Node," showcasing 
processes at SNs such as 𝑊𝑊𝑢𝑢𝐶𝐶 reception, CSMA-CA, and joining request transmission. 
Furthermore, there are two horizontal boxes present. The upper box labeled "SETUP PHASE" 
involves activities such as cluster formation and TDMA slot allocation to sensor nodes. On the 
other hand, the lower box known as "STEADY STATE PHASE" covers tasks related to data 
transmission to the UAV and reception of acknowledgment (AcK) from it. The illustration 
clearly shows a full cycle in which all essential procedures occur in distinct boxes for both UAV 
and ground SNs. The setup phase and steady-state phase are delicately enveloped within separate 
dotted boxes, each one symbolizing unique stages nestled within a single round of the envisioned 
protocol. 

 

Figure 8 - Diagram depicting the proposed protocol. 

The Data Flow Model includes collecting information from deployed SNs via their 
designated TDMA slots. Subsequently, these sensor nodes forward the data packets to the 
assigned Cluster Head, which happens to be an Unmanned Aerial Vehicle. To guarantee the 
dependable transfer of data, a protocol known as selective repeat is employed, which is a type of 
automatic repeat request (ARQ) protocol. In DICOT-CUAV, the SN will discard any data 



packets that have been acknowledged by the UAV because of memory limitations. To ensure 
reliability, the SN needs to resend the data packets that have been sent but not yet acknowledged 
in the upcoming round. Having a reliable transmission of data between Sensor Nodes and 
Unmanned Aerial Vehicles is essential in Wireless Sensor Networks. Factors like the duration of 
TDMA slots allocated by the UAV and channel behavior can affect this transmission. Ensuring 
consistent channel conditions is crucial for precise data transmission. Frequent shifts in channel 
conditions may reduce the likelihood of receiving acknowledgments (ACK) for data packets 
from the UAV, leading to extended waiting periods for the SN and heightened energy usage. In 
these circumstances, the sensor node will hold onto the data packets for the upcoming UAV 
encounter, unable to store any more sensed data because of its limited memory capacity. 
Ensuring reliable data transmission requires careful consideration of the critical aspect of the 
TDMA slot length set by the UAV. If the TDMA slots are too brief, it may not be possible to 
effectively transmit all data packets within that allocated time interval. As a result, any remaining 
data packets will need to be queued for the upcoming UAV cycle. Hence, it is crucial to set the 
TDMA slot duration in a manner that ensures the successful transmission of all data packets 
within the designated time frame. If the TDMA slots are excessively long, this will lead to an 
extended period of hovering for the UAV. To guarantee dependable data transmission, it is 
crucial to finely tune parameters like TDMA slot duration, channel conditions, and UAV hover 
time. By optimizing these parameters, we can improve the dependability of data transmission 
and facilitate the smooth transfer of sensed data from the Sensor Network to the Unmanned 
Aerial Vehicle with minimal interruptions or data losses. Figure 9 beautifully depicts the 
complete operational process of the DICOT-CUAV protocol. 

 

Figure 9 - A visualization of the data movement in the context of DICOT-CUAV. 

4. Performance Analysis 

4.1 Network Throughput 

The rate of data transfer from a sender to a receptor over, or across different locations, is often 
called network throughput and is measured in bits per second. It includes network latency, packet 
loss, and protocol factors to accurately provide real transfer speeds. High network performance 
means efficient use of network capacity. The proposed DICOT-CUAV model incorporates 



clustering and TDMA slot allocation, while the inclusion of additional data transmission slots 
has resulted in lower collision rates and greater total data volume. The use of CSMA-CA ensures 
that the probability of packet collisions is reduced. Both UAVs and SNs contribute to the 
prolonged lifespan of nodes through their energy consumption. This is advantageous. CCA 
ensures that data packets are transmitted through cleaner channels, which can increase 
throughput. 

 

Figure 10 - Network Throughput 

4.2 Power Utilization 

Energy consumption refers to the amount of electrical energy utilized by a system, device, or 
component to operate smoothly. System efficiency and power consumption are usually measured 
in watts. Optimizing energy use is important to improve energy efficiency and extend the life of 
battery devices. The way the DICOT-CUAV model works is by regulating the energy usage of 
both UAVs and SNs. To conserve energy, the UAV only moves at a fixed altitude and avoids 
unnecessary maneuvering. Avoiding unnecessary transfer of power to SNs that already have 
enough energy. Only the required retransmissions are utilized by the selective replay protocol, 
which prevents energy wastage in duplicate data transmissions. 



 

Figure 11 - Power Utilization 

4.3 Energy Efficiency 

The energy efficiency of a system or device represents how effectively it can carry out its 
intended function while using a minimal amount of energy. This useful yield is usually measured 
as a fraction of the total energy. Improving energy efficiency reduces energy waste and operating 
costs. By acting as a CH, the UAVs in the DICOT-CUAV model are highly energy efficient, 
which reduces the long-range energy consumption needed for data transfer. By utilizing multiple 
TDMA slots for transmission and collecting information from local satellites, the model can 
reduce collisions and energy consumption, ultimately saving significant amounts of energy. 
Energy consumption is minimal and data is transmitted with reliability. 

 



Figure 12 - Energy Efficiency 

4.4 Data Delivery Ratio 

The data transmission ratio gauges the amount of information sent from a source to its intended 
destination. Its importance lies in the ability to measure the reliability and efficiency of data 
transmission through network communications. A higher data transfer ratio means more efficient 
and reliable data transfer. A high data transfer ratio is a key feature of the DICOT-CUAV model. 
Its model relies on several techniques, including cluster-based data collection, TDMA slot 
allocation, ARQ protocol implementation (CCA), and adaptive data aggregation to ensure 
consistent transmission with minimal loss. This is achieved using various approaches. High data 
rates in WSNs can be maintained with the proposed model. 

 

Figure 13 - Data Delivery Ratio 

4.5 Average Delay 

The average delay represents the duration for data packets to travel across a network from one 
point to another, as explained earlier. All possible delays due to processing, queuing, delivery, 
and forwarding are listed. A lower average delay means a more responsive and efficient network. 
The average delay in the DICOT-CUAV model is relatively minor. Adaptive manipulation of 
data aggregation and channel conditions, the model's well-structured data transmission protocols, 
efficient use of TDMA slots (throughput control modules), and structured communication 
methods make it possible to reduce the time required for transmitting data from SNs to base 
station UAVs. High-speed data transmission in WSNs is a desirable outcome of the proposed 
model. 



 

Figure 14 - Average Delay 

4.6 Data Loss Ratio 

Data loss is the proportion of packets sent to the network minus the data packet that does not 
make it. It measures the reliability and efficiency of data transmission. A better data loss ratio 
leads to more flexible and reliable networks. The DICOT-CUAV model has a low data loss ratio. 
Effective communication protocols, dependable delivery mechanisms, and adaptive processing 
of data loss conditions are all key factors in reducing the probability that data will not be lost. 
Reliable data transmission in WSNs is facilitated by the proposed model. 

 



Figure 15 - Data Loss Ratio 

4.7 Routing Overhead 

Routing overhead is the total expenditure of network resources for maintaining and managing 
routing tables and routes, which is known as the cost of routing. This includes bandwidth, 
processing power, and time spent on tasks such as route finding and maintenance.  The network's 
overall efficiency and effectiveness may be negatively impacted by high routing costs. Despite 
the DICOT-CUAV model's focus on efficient and reliable data transmission, the moderate to 
high routing overhead is inevitable due to dynamic clustering, UAV motion control, and channel 
estimation complexity. The model's objective is to achieve greater data reliability, energy 
efficiency, and network throughput without incurring additional overhead. 

 

Figure 16 - Routing Overhead 

4.8 Evaluation of average reward and sensing accuracy 

Each model’s performance is measured by the average reward assessment over time, which 
reflects the total benefit obtained. Sense accuracy evaluates each model's ability to detect or 
sense targets with sufficient accuracy. By using both metrics, the model's efficiency and 
dependability can be gauged as it moves through different time stages. Better model performance 
is equated to higher values. 



 

Figure 17 – Average reward and sensing accuracy 

5. Result and Discussion 

As we discussed in the above section, we have calculated a list of performance metrics 
they are network throughput, power utilization, energy efficiency, data delivery ratio, average 
delay, data loss ratio, routing overhead, and average reward and sensing accuracy. This helps to 
showcase the development of DICOT-CUAV proposed with three existing techniques 
MOOUAV, EHUAVCR, and MUAVFD. 

Figure 10, shows the throughput which compared the DICOT-CUAV proposed model 
with the MOOUAV model is 201.45 Kbps, the EHUAVCR model is 256.28 Kbps, the 
MUAVFD model with 326.17 Kbps, where our DICOT-CUAV model achieve a high value 
531.89 Kbps. Which compares to high utilization of throughput. Figure 11, performs power 
utilization with the existing model of MOOUAV model has 256.17 Joules, the EHUAVCR 
model has 201.71 Joules, the MUAVFD model is 125.31 Joules, and our DICOT-CUAV model 
achieves low power utilization of 109.47 Joules. In Fig 12, the proposed model DICOT-CUAV 
model achieves a high energy efficiency of 89.74 %, when compared to our existing model 
MOOUAV model at 61.47 %, the EHUAVCR model achieves 69.25 %, and the MUAVFD 
model is 75.16 %. In Fig 13, data delivery is consumed by 96.28 % of the DICOT-CUAV 
proposed model. Where the existing techniques are archives 75.28 %, 81.46%, and 86.74 %. 
Which is compared to a high proposed model. The average delay is showcased in Fig 14, the 
existing techniques are archived higher than our DICOT-CUAV proposed model. Where 
the MOOUAV model is 285.47 ms which very higher than all other models. The EHUAVCR 
and MUAVFD models are 203.78 ms and 156.89 ms. Our DICOT-CUAV model is archived 



109.25 ms which is less than other models. Fig 15, delivers the ratio of loss of the existing 
models MOOUAV model is 35.48 %, the EHUAVCR model is 31.47 %, and the MUAVFD 
model is 25.56 % where the DICOT-CUAV model achieves a less delay of 8.36 %. Fig 16 
discusses the overhead of the MOOUAV model is archives high 1568 packets, whereas 
the EHUAVCR model has 1025 packets, the MUAVFD model has 892 packets, and our 
proposed model achieves less overhead when compared to the exiting technique’s 289 packets. 

The effectiveness of the DICOT-CUAV model in various network and energy efficiency 
metrics is demonstrated through an evaluation. The model achieves high Fig 10., throughput by 
utilizing efficient clustering, TDMA slot allocation, and CSMA-CA, which minimize collisions 
and maximize channel usage. Achieving optimal Fig 11, power utilization is possible by 
controlling the movement of UAVs and implementing specific retransmissions. UAVs and SN 
batteries can be extended using this method. UAVs that function as cluster heads save Fig 12, 
energy by reducing the need for extended data transfers, with additional features like TDMA 
slots and local data collection to minimize collisions. By utilizing cluster-based data collection, 
adaptive dataset aggregate, and reliable protocols, the model can deliver high levels of 
information with minimal loss as discussed in Fig 15. Using adaptive aggregation and efficient 
TDMA allocation, the Fig 14, average delay is reduced to reduce packet delivery times. By 
utilizing reliable communication protocols, the data loss ratio is kept within acceptable limits, 
which enhances the reliability of the information. Dynamic clustering and channel estimation 
generate a moderate to high amount of Fig 16, routing overhead, but this is offset by improved 
data reliability and efficiency. The prototype displays a consistently high reward level and 
precise sensing performance over time, indicating its effectiveness in providing significant 
rewards while maintaining accuracy. By optimizing data throughput, energy consumption, and 
reliable data delivery effectively, DICOT-CUAV is well-suited for resource-intensive 
environments like WSNs. 

6. Conclusion 

 An integrated system of EH-UAV-CRN that integrates both primary and secondary 
networks with UAVs to improve the reliability of data transmission and communication. 
Dynamic network conditions are effectively managed in this model using channel models and 
optimization algorithms. Studies on spectrum sensing and adaptive transmission strategies are 
centered on reducing interference while optimizing spectrum utilization, which is crucial for 
maintaining coexistence between primary and secondary users. To address congestion and 
connectivity challenges in IoT networks, the DR-UAV routing protocol is an innovative solution. 
This protocol provides effective disaster and environmental monitoring solutions that require 
reliable communication. DICOT-CUAV is a comprehensive protocol that offers optimum 
performance for UAV-assisted data acquisition in WSNs DICOT-CUAV's combination of 
dynamic clustering, TDMA scheduling, and efficient data transmission strategies allows it to 
tackle the challenges of energy efficiency, data reliability, network coverage, etc. A consistent 
cycle is created by its repeated initialization, cluster formation, and steady-state data 



transmission in a variety of environmental conditions, guaranteeing reliable operation. Optimal 
data integrity is achieved through the selective repeat ARQ mechanism, which precisely 
manages all retransmissions and improves system reliability. DICOT-CUAV is an essential 
advancement in enhancing the performance and longevity of WSN applications that are UAV-
compatible. Utilizing the EH-UAV-CRN combination with the DICOT-CUAV protocol offers a 
complete solution for future wireless communication systems. The integration of UAV 
technologies with modern protocols will not only improve communications reliability and 
spectrum efficiency, but also provide a path for innovative uses in IoT, disaster management 
systems, and environmental monitoring. The well-structured blending of these technologies and 
protocols establishes a solid foundation for wireless network evolution, guaranteeing improved 
efficiency reliability as well as flexibility in harsh and ever-changing environments. 
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