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SUMMARY

The IoT technology allows numerous devices to link up with the Internet and exchange data smoothly. It is predicted that 
shortly, there will be trillions of these devices connected. As a result, there is a growing demand for spectrum to deploy 
these devices. Many of these devices operate on unlicensed frequency bands, leading to interference as these bands become 
overcrowded. A new communication approach known as cognitive radio-based Internet of Things (CR IoT) is rapidly 
emerging to address this issue and the spectrum scarcity. This involves integrating cognitive radio technology into IoT 
devices, allowing for dynamic spectrum access, and overcoming interference problems. In current systems, a significant 
portion of the spectrum designated for primary users (PU) may be underutilized, leaving room for secondary users (SU) to 
utilize the spectrum. However, the main challenge is that SUs must continuously send packets until they find an available 
channel in real-world conditions, resulting in excessive communication and packet loss. To overcome these kinds of 
drawbacks in the network in this article dynamic intelligent channel allocation with optimized throughput-based cognitive 
UAV guided network model is developed. The major categories that are concentrated in this model are UAV-based cognitive 
IoT network construction, dynamic intelligent channel assignment model, and optimized throughput calculation process. 
By utilizing these methods, we can achieve streamlined channel allocation and economical communication, ultimately 
enhancing the performance of the UAV-guided CRN-based IoT environment. The implementation of this model is carried 
out in MATLAB software and the parameters that are considered for performance analysis are network throughput, power 
utilization, energy efficiency, data delivery ratio, and average delay. 

KEY WORDS: Internet of things (IoT), Cognitive UAV, Unmanned aerial vehicles (UAV), Dynamic intelligent channel 
assignment

1. INTRODUCTION

The pressing need to address problems related to spectrum 
scarcity and energy shortages has emerged as a result 
of the swift growth in wireless traffic during the 5G era. 
One potential solution is the implementation of cognitive 
radio networks (CRNs), which can effectively utilize 
spectrum resources to address the problem of spectrum 
deficit [1–2]. It is essential for secondary users (SUs) in 
CRNs to strictly adhere to authorized spectrum usage and 
ensure that they do not disrupt primary users (PUs) with 
any unacceptable interference. There exist four primary 
methods for secondary users to access authorized spectrum: 
opportunistic spectrum sensing in overlay mode, spectrum 
sharing in underlay mode, cooperation, and a combination 
of overlay and underlay modes [3]. In overlay mode, 
secondary users will only transmit when primary users 
are not utilizing the spectrum, whereas in underlay mode, 
secondary users are able to coexist with primary users if 

their interference remains within acceptable limits [4–5]. 
In cooperation, SUs act as relays with PUs. The hybrid 
mode allows for continuous use of the authorized spectrum 
by adjusting power levels based on PU activity. The hybrid 
approach is seen as the most versatile and dynamic in 
terms of optimizing overall spectrum efficiency (SE) when 
compared to other methods. Moreover, progress in energy 
harvesting (EH) technology has enabled wireless users 
to efficiently collect renewable energy sources like solar, 
wind, and ambient radio frequency (RF) signals [6-8]. 
This innovation enables users to overcome energy scarcity 
challenges without relying on conventional fixed batteries 
or power sources.

The adoption of UAVs in wireless communication has 
been on the rise as technology has advanced in recent 
years [9–10]. These UAVs have demonstrated significant 
promise for a range of purposes, including serving as 
wireless mobile terminals, base stations, access points, 

http://10.5750/sijme.v167iA2(S).2512


2

TECHNOLOGIES AND THEIR EFFECTS ON REAL-TIME SOCIAL DEVELOPMENT, VOL 167, PART A2 (S), 2025

and relay terminals. Their incorporation into wireless 
networks can greatly improve connectivity, coverage, 
and capacity. However, some challenges and tradeoffs 
need to be considered when using UAVs in cooperative 
relay systems. One of the main challenges is optimizing 
the trajectory of the UAVs, which is crucial for ensuring 
efficient, stable, and safe flight operations [11]. This is 
especially important when these vehicles are being used 
as relay terminals in wireless networks. In pursuit of 
enhancing energy efficiency and extending the longevity 
of upcoming wireless communication systems, energy 
harvesting (EH) emerges as a promising strategy that has 
received considerable attention in the realms of cellular 
networks and relay selection for cooperative networks 
[12–13]. Effectively placing drones near individuals is a 
key obstacle in creating systems that utilize unmanned 
aerial vehicles (UAVs), as mentioned. Several optimization 
techniques, such as evolutionary algorithms, have been 
proposed. Wireless devices have the capability to harness 
energy from renewable sources or from the RF signals 
they receive. This phenomenon is referred to as RF-EH, in 
which energy-constrained wireless devices are capable of 
harvesting and storing energy from RF signals transmitted 
by other wireless devices [14]. The phrase IoT, or Internet of 
Things, denotes a collection of interconnected devices that 
are linked to the internet, often referred to as IoT devices. 
These devices possess special identification features and 
can collect, analyze, and share data online. They can 
also adjust their usage, deployment, and programming 
accordingly. In a general sense, IoT devices encompass 
unconventional computing gadgets located in various 
settings such as smart homes, offices, environmental 
monitoring systems, hospitals, industrial automation 
systems, connected vehicles, remote asset control systems, 
and more. Such devices have the capability to connect to 
the Internet and communicate wirelessly. 

Wireless communication has been evolving through 
the utilization of Cognitive Radio (CR), a promising 
communication model aimed at enhancing the efficiency 
of the existing radio spectrum. In order to improve 
spectrum efficiency and tackle possible scarcity concerns 
in future wireless networks, Cognitive Radio is foreseen 
to empower radio devices with intelligence for optimal 
spectrum utilization. Joseph Mitola first introduced 
CR, followed by an in-depth examination of CR-based 
Networks (CRNs). By detecting and making use of unused 
frequency bands, CR enables Secondary Users (SUs) to 
operate more efficiently. Additionally, CR can sense and 
monitor surrounding radio environments to determine 
whether Primary Users (PUs) are present or not. This 
enables the discovery and use of vacant spectrum gaps 
or unused communication time slots without causing any 
disruption to Primary Users (PUs). In IoT-based networks, 
where many wireless devices require spectrum for their 
operations, utilizing the limited resources is crucial. As a 
result of the rapid progress in the wireless communication 

sector and the extensive use of diverse wireless networks, 
the radio spectrum is becoming more crowded. However, 
CR demonstrates significant potential in effectively 
accommodating many IoT devices in the current spectrum. 
The article explores the research challenges, open 
issues, and future directions for CIoT networks in depth. 
Effectively utilizing the available radio resources poses a 
major challenge in upcoming cooperative CIoT networks.

2. RELATED WORKS

In [15], the use of multi-antenna UAV-mounted relays 
and NOMA enhances IoT device performance. Results 
indicate better outcomes with more antennas, SNR, and 
fading severity compared to OMA schemes. In [16], the 
combination of UAVs and wake-up radios in remote IoT 
applications outperforms six benchmark routing protocols, 
enhancing network stability, energy efficiency, and data 
collection. In [17], an optimized UAV formation tracking 
using deep reinforcement learning and the proposed 
DIDDPG algorithm for communication delay mitigation. 
In [18], using UAVs to deploy small cells in hard-to-
reach areas for wireless coverage, focusing on optimizing 
energy use through efficient scheduling. In [19], enhancing 
performance in simulations is achieved by employing 
a strategy involving deep reinforcement learning for 
offloading UAV tasks in power inspection to mobile edge 
computing servers. In [20], an energy-efficient optimization 
method for deploying UAVs in IoT data collection uses new 
encoding for stop points and combines DEoPS and GBoPS 
techniques. Results show each excels in different areas. In 
[21], a novel cross-layer computing framework combined 
with a deep learning-based offloading algorithm enhances 
performance in power IoT by as much as 20. 73%. In [22], 
improving IoUT communication with deep reinforcement 
learning, integrating renewable energy, reducing hops, and 
addressing interference challenges. In [23], developing 
a cooperative UAV-assisted task offloading system can 
optimize energy efficiency and task distribution in disaster 
areas. Simulation results show significant energy savings 
and improved performance. In [24], a UAMS for 6G 
networks balances costs and service needs, enhances 
migration efficiency, and improves system performance.

In [25], the utilization of blockchain technology in UAV-
assisted IoT data collection systems bolster security and 
improves energy efficiency. Unmanned Aerial Vehicles 
function as edge nodes, utilizing charging tokens for 
recharging purposes and employing an adaptive linear 
prediction algorithm to decrease energy usage. The 
simulation results confirm the effectiveness of the system. 
In [26], the algorithm enhances resource management 
and pricing within a BaaS-MEC system through 
facilitating information exchange among base stations. 
It employs a combination of hierarchical reinforcement 
learning techniques, including deep Q-learning and 
Bayesian deep learning, to achieve convergence. In [27], 
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methods are proposed to enhance data rates in molecular 
communication by utilizing multiple emitters and detectors 
with algorithms. In [28], a routing protocol designed for 
UAVs in IoT applications that focuses on energy efficiency 
seamlessly combines extensive data aggregation with rapid 
point-to-point communication. In [29], a UAV-enabled 
MEC network structure uses a cooperative computation 
offloading scheme with interference mitigation. In the 
IoT environment, deep reinforcement learning improves 
utility by optimizing offloading decisions and resource 
management. In [30], a novel UAV-centered IoT network 
has been suggested for effective data gathering and three-
dimensional device locating. A DE-based optimization 
method minimizes energy consumption and improves 
performance compared to traditional networks. In [31], 
utilizing UAVs and delay-tolerant networking protocols 
enables data collection from IoT devices across extensive 
regions even without established infrastructure. A path 
planning algorithm is proposed for efficient UAV flight 
paths. In [32], energy efficiency optimization for UAV–
based communication networks are the focus of this study, 
despite uncertainties. A convex optimization scheme with 
closed-form resource allocation expressions is proposed, 
which performs well in simulations. In [33], a NOMA-
based cognitive UAV communication system to tackle 
spectrum scarcity with a joint optimization algorithm. 
In [34], a reconfigurable intelligent surface, known as 
RIS, enhances a UAV-assisted cognitive radio system 
by mitigating blocked line-of-sight channels. Enhancing 
achievable rates for secondary receivers is improved by 
optimizing UAV trajectory, transmit power, and RIS phase 
shifts. The simulation has verified its effectiveness.

In [35], the goal of secure RSMA cooperation schemes 
for maritime cognitive UAV networks is to optimize 
transmission rate, considering primary privacy and quality 
of service. A CPFS algorithm improves the transmission 
rate compared to traditional schemes. In [36], energy-
harvesting UAVs combine with CR tech for dependable 
communication. Analytics on residual energy, connection 
outages, and secrecy outages are developed. Optimization 
problems are posed, and simulations validate the results. In 
[37], improving post-disaster surveillance using UAVs and 
CRN focuses on optimizing transmission power and data 
rate while addressing interference. Proposed algorithms 
exceed random power selection for higher data rates. In [38], 
utilizing a multi-agent reinforcement learning framework 
to enhance channel allocation in cognitive UAVs. Using 
UCB-H and DDQN, it shows improved network 
performance. In [39], a cognitive IoT system makes use 
of UAVs equipped with energy harvesting capabilities to 
act as relays, enhancing communication between a satellite 
source and IoT devices. A multi-objective optimization 
framework with the Outer Approximation Algorithm 
outperforms NOMAD. In [40], an energy-efficient UAV-
based cognitive radio network that adjusts transmission 
power based on primary user sensing and energy harvesting 

using compound Poisson distribution. Optimized resource 
allocation is achieved with Lagrange duality, resulting in 
significant energy efficiency gains. In [41], the swapping 
method optimizes UAV deployment in disaster operations, 
improving connectivity, coverage, and network lifespan in 
high-pressure situations.

3. PROPOSED DICOT-CUAV MODELS

3.1 UAV-CRN NETWORK MODEL

This paper delves into an EH-UAV-CRN comprising a 
secondary network (SN) and a primary network (PN), 
which includes a pair of transmitters and receivers. The 
SN possesses a flying UAV known as ST, along with a 
designated receiver named SR. The SN can use PN’s 
licensed spectrum for transmitting data. The user’s location 
is conveniently represented through a three-dimensional 
Cartesian coordinate system. The aircraft ST navigates 
smoothly in a circular path at a height of H, maintaining a 
radius of R with its center positioned at x y HST ST

( ) ( ), ,0 0 . Flight 
speed is represented by the symbol V, and the position of 
ST can be determined at any given time t. The angle of 
flight for ST is symbolized as vt

R
. We can infer that PT is 

located at (xPT, yPT, 0) and PR is positioned at (xPR, yPR, 0). 
Moreover, we can also presume that SR remains stationary 
at coordinates (xSR, ySR, 0). Consequently, the distances 
from ST to SR and from ST to PR can 
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In the same way, the distances for the connections between 
ST-PT and PT-SR can be outlined as follows.
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In the Figure 2. The UAV in CRN employs the standard 
frame design with each time slot comprising a sensing 
period τ and a transmission sub-slot T−τ. It should be 
noted that in this study, a frame refers to the duration 
of one UAV flight. Therefore, the duration of one frame 
can be expressed as

 T R
v

�
2�

 (6)
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Initially, the UAV detects the condition of the primary 
transmitter (PT) during the sensing period and then 
establishes communication with the secondary receiver 
(SR) in the transmission sub-slot. The suggested approach 
involves integrating UAVs into cognitive radio networks 
(CRN) to facilitate operations in diverse scenarios. For 
instance, UAVs could be utilized for environmental 
monitoring by gathering data from ground nodes 
and relaying it to control centers or other UAVs for 
seamless communication. The channel gains denoted 
as    g g g and gpv ss sp ps, ,   represent PT-ST, ST-SR, ST-PR, 
and PT-SR connections, respectively. To streamline the 
processing, we view each frame as representing a shading 
state. Considering the influence of weather and various 
unpredictable elements on the communication quality of a 
UAV, we investigate its communication performance under 
prolonged fading conditions. During a shading state, all 
connected links undergo block fading, where the channel 
state stays constant within a frame but switches between 
frames. The LOS links, specifically ST-PR, ST-PT, and 
ST-SR, are represented by a blend of small-scale fading 
and propagation loss in their modeling.

 g g
Dx x
o

x

�
�

2  (7)

Consider x as a collection containing pv, ss and sp. The 
variable |gx| is established as a complex Gaussian random 
variable with an average value of zero and a variance of one. 
This variable considers the differences in signal strength 
between the main node (ST) and all the other nodes located 
on the ground. The symbol ρ0 denotes signal attenuation 

for every unit of distance, and the expression 
ρ0

2Dx
demonstrates how much path propagation is influenced 
by the Euclidean distance separating ST and ground nodes 
as per equations 2–4. The remaining ground-to-ground 
channels exhibit characteristics of Rayleigh fading. Within 
this context, the symbol α signifies the factor that describes 
the attenuation of signal intensity as distance increases, 
while gps denotes the variations in signal strength caused 
by sudden environmental changes. The direct distance 
between the transmitter and receiver is referred to as Dps 
in a point-to-point link. Moreover, it is understood that 
the primary user’s signals are characterized by complex 
phase-shift keying (PSK), whereas the noise received by 
the secondary receiver is circularly symmetric, following 
a Gaussian distribution with zero mean and unit variance. 
Spectrum sensing refers to the process of identifying the 
frequencies that are currently accessible. When a UAV has 
access to the same spectrum as a primary user (PU), there 
may be interference if both users are present. To avoid this, 
the secondary user (ST) needs to sense the spectrum and 
determine when it is safe to use the authorized band. Where 

the UAV uses an energy detection (ED) method to assess 
the presence of a PU, resulting in a binary hypothesis test.

The value of n represents the n-th sample of PT’s 
signal, while y(n) represents the signals received by the 
UAV. The signal sent by PT is denoted as s(n), and the 
n-th noise sample is represented as v(n). The spectrum 
sensing result using energy detection (ED) is expressed as 
T y
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, where fs is the sample frequency. It is 
important to point out that since the connection between 
ST and PT is a dependable line-of-sight (LoS) link, any 
possible fading effects on the UAV’s sensing decisions can 
be disregarded. Hence, when employing an ED strategy, 
the calculation of detection probability and false alarm 
probability can be done in the following manner.
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In this situation, the symbol ε signifies the minimum 
detectable level of Emergency Department (ED) 
detection, while γ represents the ratio of signal strength 
to noise received by the UAV. Q(·) is the inverse of the 
standard Gaussian distribution function, symbolized as 
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. Additionally, a predetermined 

threshold P ̅  d is set to ensure complete protection of the 
primary user from interference. As a result, Pf (τ, ε) can be 
reevaluated using this information. In the allocated time 
for transmission, the UAV can regulate its transmission 
strength based on its sensing results. This means that 
when the primary user (PU) is not in use, the UAV will 
transmit with greater power, denoted as Ps

(0), while it will 
use lower power, denoted as Ps

(1), if the PU is detected as 
occupied. By doing so, the UAV can efficiently utilize the 
licensed spectrum and prevent any major interference with 
the PU. However, due to limitations in spectrum sensing 
technology, such as shadowing and fading, there may be 
errors in the sensing process. As a result, there are four 
possible scenarios depending on the sensing results and 
status of the PU. The primary user (PU) is not in use and 
the unmanned aerial vehicle (UAV) can detect it correctly 
with a probability of a0, which is equal to the probability 
of the PU being inactive H0 multiplied by the probability 
of false detection Pf. The SU’s rate at that moment is 
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. The primary user’s status is 

currently inactive; however, the unmanned aerial vehicle 
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incorrectly detects it as busy with a chance of a1 = P(H0)
Pf. Furthermore, the current data rate of the secondary 

user is r g P
N
ss s
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occupied, however, there is a possibility that the unmanned 
aerial vehicle may falsely detect it with a probability of β0, 
which is equal to the probability of the primary user being 
present P(H1) multiplied by the probability of detection  
(1 − Pd). The SU’s instantaneous rate can be represented as  
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the unmanned aerial vehicle correctly identifies this with 
a probability of β1 = P(H1)Pd. The current speed of the 
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. In this context, 

P(H0) refers to the likelihood of the primary user (PU) 
being idle, while P(H1) represents the probability of the 
PU being busy. The initial number in the instantaneous 
rate indicates the actual state of the PU (0: available; 1: 
occupied), while the second number shows the detection 
outcome by the unmanned aerial vehicle (UAV) (0: not 
present; 1: present).

3.2 UAV DATA TRANSMISSION

This section of the text details the creation and design 
journey for the Decision-based Routing for Unmanned 
Aerial Vehicles and the Internet of Things (DR-UAV IoT) 
routing solution, which is crafted upon distinct decision 
criteria. The solution involves two primary phases: 
directing data between UAV nodes and transmitting data 
from UAVs to IoT infrastructure devices. It functions as a 
tool for determining how data should be routed, especially 
when the ground network is crowded and unable to send 
data to the decision center or main servers. The IoT 
infrastructure is responsible for gathering and transmitting 
data to UAV nodes, which subsequently relay it to cloud or 
backbone devices to enhance decision-making processes. 
The development of the two primary modules in this 
solution was carefully crafted through a series of steps. The 
initial module emphasizes UAV-to-UAV communication, 
facilitating data routing among UAV nodes. On the flip 
side, the second module leverages the proposed solution 
to collect data from base stations (BS) and integrate it 
with the IoT network situated on the ground. Usually, BS 
is well-equipped with ample resources such as bandwidth, 
transmission power, and coverage. This module makes use 
of location services for communication between nodes. 
These services strive to acquire precise and current node 
locations. Moreover, the DR-UAV IoT system utilizes 
location services to enhance the functionality of IoT 
network services. UAV nodes are present in the network 
to support IoT networks, whether in densely populated or 
sparsely populated network environments. Over time, this 

solution accurately assesses ground network density by 
measuring distances among UAV nodes and pinpointing 
areas with heavy traffic through the exchange of brief 
messages. Furthermore, battery power levels are also 
checked by UAVs before participating in data collection 
activities; priority is given to drones with ample battery 
power. Figure 1 illustrates the components of a drone.

The control station, also known as the BS, plays a crucial 
role in managing IoT and UAV traffic. Its main function is 
to support the network and enable strong transmission and 
receiving capabilities. This can be a difficult task as UAVs 
and IoT nodes often face challenges in communication due 
to limited ad hoc networks. The BS helps overcome these 
limitations by providing support to enhance the network 
and adjust channel conditions and paths for UAVs and 
nodes. However, data collection can still be a challenge 
if the BS does not meet network requirements. In order 
to reduce interference, every base station function on a 
designated frequency, with its communication coverage 
dictated by the size of the cell. Furthermore, the Base 
Station is connected to a central entity called the mobile 
telecommunication switching office to facilitate additional 
data analysis. In this section, we utilize the suggested 
routing approach for the transmission of data. The module 
is structured around two primary phases: UAV-to-IoT and 
UAV-to-UAV data routing. During the initial phase, data is 
gathered from IoT networks on the ground, with the nodes’ 
positions being pinpointed through GPS technology. The 
UAV employs a routing strategy to pinpoint a designated 
area, like a stadium, field, or disaster site, by utilizing 
up-to-date data on node density in the ground IoT network. 
This is accomplished by the innovative DR-UAV IoT 
protocol, which initially collects data on node density 
from a centralized IoT infrastructure. Next, every UAV 
node identifies the connectivity factor and chooses the 
appropriate region for data gathering. In order to assess 
node density, the solution employs pre-segmented fixed 
zones that have a communication range of 250 meters. 
Every UAV node ensures full coverage of its assigned area 
while keeping data up-to-date through the exchange of 
Hello packets with IoT nodes located on the ground. This 
guarantees that each UAV node possesses a current routing 
table that relies on details regarding node density. Figure 2  
showcases the exchange of Hello packets happening at 
ground level.

The UAV updates the routing table by recording the number 
of nodes and their corresponding locations within the 
designated zone. Equation (1) demonstrates the calculation 
of the total number of IoT nodes in the selected area.

IoT Total IoT AreaNode Zones Nodei

TotalZones
( ) ( )�

�� 1
 (10)

The |TotalZones| signify the total number of zones in a 
particular region, while the IoTNode(Area) refers to the 
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quantity of nodes existing in the IoT network. Moreover, 
the level of connectivity plays a vital role in the proposed 
protocol, established through the analysis of density 
data collected from the BS. The UAV nodes make use of 
the density table to evaluate the connectivity level and 
calculate it accordingly. This table presents data on node 
density obtained from the information collected by the BS. Figure 1. Essential parts of a drone

Figure 2. Estimating the density of IoT Network Nodes using Unmanned Aerial Vehicles (UAVs)

Figure 3. The communication distance of every element within the network
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The DR-DR-UAV IoT protocol’s design depends on the BS 
for connectivity and as a key infrastructure for providing 
services. Figure 3 provides a visual representation of the 
communication flow among the Base Station, UAVs, and 
IoT nodes. The BS degree plays a vital role in supporting 
data communication within IoT networks that rely on 
various communication technologies and standards. Its 
primary role is to offer communication services to both IoT 
nodes and UAV nodes. The Bright Star is fully furnished 
with essential resources like batteries, processing units, 
storage devices, and robust long-range receiver and 
transmission tools. We make use of GSM IoT (EC-GSM-
IoT) services to send data, as it effectively saves energy 
and enables long-range communication for IoT devices, 
serving as a low-power wide area network technology. 
Numerous studies have shown how effective GSM IoT 
service is when compared to alternative standards such as 

Wi-Fi and cellular networks. The transmission range and 
coverage area of UAVs depends on the density of nodes 
present on the ground. Additional transmission power 
is needed for nodes in an IoT network with more nodes 
than UAVs to facilitate data sensing and collection, while 
microcells support the transmission power requirements 
for UAVs. Algorithm 1 details the steps involved in linking 
UAVs to an IoT network.

The beginning of the UAV-to-UAV data communication 
process occurs during the second module. This entails 
the exchange of information among the drones’ nodes 
to monitor ground updates and status. In this phase, a 
responsive routing strategy is utilized, allowing the protocol 
to create routing paths as required. The primary goal of this 
module is to identify nearby and nearest UAV nodes for 
seamless connectivity. Nevertheless, the network cannot 

Algorithm 1. (UAV-to-IoT)

Input: CUAV: The potential unmanned aerial vehicle (UAV) point
Output: The density of nods in IoT network

1. IoT: Internet of Things network point
2. If (Data on traffic density is received from the IoT network through a base station)
3. Then (Establish coordinates using location service) Else
4. Transmit broadcast messages to assess the node density within the IoT network.
5. If congestion is identified within the IoT network.
6. Gather information from the IoT network.
7. Alternatively, wait for a random interval before repeating the procedure.
8. End task 
9. Find out the distance and then travel to the designated destination.
10. End if 
11. End process 

Figure 4. The procedure for sending route reply messages between unmanned aerial vehicles (UAVs) is known as 
the RREP process



8

TECHNOLOGIES AND THEIR EFFECTS ON REAL-TIME SOCIAL DEVELOPMENT, VOL 167, PART A2 (S), 2025

ensure uninterrupted data transmission due to the frequent 
disconnections caused by the high mobility of UAVs. The 
suggested DR-UAV IoT protocol effectively tackles this 
concern by enabling decisions and exploring alternative 
pathways without the need to restart the discovery process. 
In order to establish a connection smoothly, the UAV 
node initiates by updating its routing table to include 
details regarding the locations of the source (IoT nodes) 
and destination (Main Center devices). Subsequently, by 
utilizing additional interconnected UAV nodes in the sky, a 
routing path is established towards the intended destination 
to efficiently relay data. The Route Request Packet (RREP) 
is utilized to keep this route updated. After gathering all 
data from IoT nodes, it is then seamlessly transmitted to the 
central hub, strategically positioned according to network 
specifications. For example, in a sports stadium setting, the 
central command would typically be in the control room. 
The RREP packets consistently seek direct link nodes for 
transmitting data packets. Figure 4 showcases the RREP 
process between UAV-to-UAV nodes.

The RREQ packet includes important information such as 
the identification numbers of the source and destination 
UAVs, a unique RREQ ID, and data regarding the latitude 
and altitude of the UAV. To avoid network overload, a 
suggested approach includes combining the use of UAV-ID 
with an RREW message. If the UAV node receives the 
same identification number, it will ignore it. The route reply 
(RREP) messages are later dispatched from the immediate 
UAV node to acknowledge receipt to the source UAV node. 
Subsequently, a routing decision is reached as nodes share 
route information for a predetermined duration. Once this 
period elapses, all RREQ messages will be discarded.

3.3 CHANNEL MODEL

The location of the UAVs is given by Xm, Ym, Hm, while the 
IoT device is represented by (xi, yi, 0). This means that the 
distance between them can be calculated as 

 d X X Y Ym i m iim ( ) ( )� � � �2 2
 (11)

Each minor affected region is thought to be monitored by 
a single drone that operates within the specified service 
range assigned to it. If the IoT device sends a task to 
drone M, it needs to be positioned within the drone’s 
coverage area. The UAV’s maximum coverage radius 
is established by the parameter dmax. Communication 
between the IoT device and drone takes place wirelessly. 
To prevent any disruption, IoT devices utilize FDMA to 
offload computing tasks onto drones. When an IoT device 
and drone are communicating, the drone will fly near 
the ground, ensuring a direct line of sight with minimal 
signal interference. The data rate for the uplink can be 
determined by the variable r. The channel bandwidth 
between the IoT device and the UAV is denoted as ωu, 
with gi,m representing the uplink channel gain. The symbol 
σ2 indicates the strength of additive white Gaussian noise 
(AWGN), while pi stands for the transmission power of 
the channel. The term g0 denotes the channel gain of the 
reference channel, whereas d Hi m m,

2 2+  signifies the Squared 
Euclidean Distance from the IoT device to the UAV. The 
distance separating the UAV and LEO satellite enables the 
satellite to access the communication window only when 
α reaches 20 or above, without factoring in any other 
influences. The positions of the UAVs are designated as Xj, 
Yj, Hj. The geocentric angle θmj measures the angle between 
Earth-based IoT devices and satellites. The Earth’s radius 
is symbolized as R, with the UAV’s height indicated by 
Hm. The satellite’s altitude is represented by Hj and α 
represents the horizontal angle between the UAV and the 
satellite. The peak value of the communication window θ 
is achieved at α being 20. To determine the distance, you 
can use the following calculation method.

 � � �mj
m

j
j j

R H
R H

�
�
�

�

�
��

�

�
�� �arccos cos  (12)

Algorithm 2. Outlines how data communication occurs among UAV-to-UAV nodes using RREQ packets

Input: communication between UAVs
Output: to achieve the destination of RREQ

1. Begin by initializing the process.
2. Designate a UAV node as the candidate (CUAV).
3. Create a Route Request Packet (RREQ).
4. If the UAV receiving the RREQ is the same as the CUAV, disregard the request.
5. Otherwise, proceed to step 6.
6. If the destination of the RREQ is the same as the CUAV, select a route.
7. Otherwise, wait for a random time and repeat the process.
8. Record that the RREQ was received by the CUAV.
9. Add the RREQ to be rebroadcasted later.
10. Rebroadcast the RREQ to other UAVs.
11. End the if process.
12. End of process flow.
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H R H R H R R Hmj m m m mj� � � � � �( ) ( ) ( )2 2 2 cos�  (13)

As stated in 3GPP Release15, an extra change in frequency 
caused by the movement of satellites must be considered 
by using the following equation:

 f v
C

R H
R H

fj m
sat m

j
m j, ,� �

�
�

�
�
��

�
�

�

�
��

�

�
���cos�  (14)

The velocity of the satellite is denoted as vsat, while c 
represents the speed of light, and fm,j symbolizes the carrier 
frequency at the transmitter. The formula calculates the 
transmitting gain of the drone antenna and the receiving 
antenna gain of the satellite. The performance level of 
the antenna is denoted by φ, where Ωm and Ωj are the 
dimensions of the antennas on the reflecting surfaces of the 
UAV and satellite, respectively. The symbol ‘c’ represents 
the speed of light. The channel coefficient pertaining to the 
UAV-LEO channel. The variables umj and lmj represent the 
path loss factor. More precisely, the formula for path loss 

factor is denoted as u
H

mj
m j

m j

�
�

�
��

�

�
��

4�

�
,

,

, in which λm,j = c/fm,j.  

The data rate of the uplink channel can be determined 
using the Shannon formula, with Q denoting the Rician 
fading factor. The symbol |l ̅ m.j| denotes the line-of-sight 
(LoS) element having a value of 1, while l ̅  m.j signifies the 
non-line-of-sight (NLOS) component, which adheres to 
a sophisticated Gaussian distribution with an average of 
0 and a variability of 1. B indicates the frequency range 
used to establish the connection between the UAV and 
the satellite, Pm,j represents the transmission power of the 
UAV’s uplink, and N0 denotes the spectral density of noise 
power.

3.4 DATA OFFLOADING AND COMPUTING

The ground equipment transfers the task to the UAV, which 
then delivers the task block Si through the UAV to leoj for 
processing. aij = 1 is used to show that leoj can process 
the task, while vice versa indicates that the task Si is not 
given to leoj for processing. The time it takes for an IoT 
device to transfer the task Si to a UAV through the channel 
involves two types of delay: transmission and propagation. 
These delays denoted as Timtran  and Timprop , respectively, can 
be calculated using the equation.

 T s
r

T d
cim

tran i

im
im
prop im= =,   (15)

The speed of light is represented by the variable c. This 
formula can be used to express the time difference between 
the IoT device and the drone.

 T T Tim im
tran

im
prop� �  (16)

The amount of energy used by the device to communicate 
with the drone is computed as.

 E Tim u im��  (17)

In the communication path between the UAV and LEO, 
the time it takes to transfer task Si from the UAV to leoj 
consists of three components: transmission delay Timtran , 
propagation delay Timprop , and computation delay TJ. These 
can be described individually as follows.

 T
S
R

T
H
c

T
S
fmj

tran ij

mj
mj
prop mj

j
ij

ij

� � �, ,  
�

 (18)

Task volume size transferred represented by Sij, the Central 
Processing Unit requires β cycles to finish processing one 
unit of the task volume, while fij reflects the computation 
frequency allocated to Sij by leoj.

 T T T Tmj mj
tran

mj
prop

j� � �   (19)

The transfer of task volume from Sij to leoj is denoted by Sij, 
while the CPU requires β process cycles to execute a single 
bit of this volume. Additionally, fij denotes the computing 
frequency allocated by leoj for Sij. The delay between the 
drone and the satellite is represented by Sij. The energy 
consumption is comprised of two components: the energy 
required for transmitting data and the energy necessary 
for computing on the LEO satellite. The transfer energy 
consumption is determined by the equation.

 E
P S
Rmj
mj ij

mj

=  (20)

 E kS fj ij ij� � 2  (21)

 T T T T E E E Eprop tran j im mj j� � � � � �,  (22)

The satellite’s energy consumption is established based 
on the uplink power of UAV m, which is represented as 
Pm,j in the equation provided. The energy factor, denoted 
as k, governs both the overall time delay (T) and complete 
energy consumption (E). Tprop, or the overall delay in 
propagation time is determined by adding together 
the individual propagation delays Tprop = Timtran  + Timprop . 
Similarly, Ttran represents the total delay in transmission 
time, which can be calculated by combining the individual 
transmission delays T T Ttran im

trans
mj
trans� � .

3.5 UAV OPERATIONS

The unmanned aerial vehicle effortlessly holds a 
consistent altitude referred to as z during its flight.  
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In practical scenarios, the height is typically adjusted to 
the lowest feasible level to navigate around obstacles like 
buildings and trees effortlessly, minimizing the need for 
frequent adjustments in vertical positioning. The UAV’s 
responsibilities can be divided into three main categories: 
movement, data transfer, and wireless power distribution. 
This implies that the controller directs the UAV to perform 
these operations during every time interval. UAV can 
either remain stationary or move to a nearby location 
using energies  respectively. At the same time, there is 
a designated charging station for the UAV located at 
LC. Staying within close range of this charging location 
allows for frequent recharging of the UAV, ensuring it has 
enough energy to continue its tasks. The scenario poses 
a challenge for sensor nodes (SNs) situated at a distance 
from the charging station. In these situations, the SNs are 
unable to receive support from the UAV as they are unable 
to transmit collected data or be charged by it. This may 
lead to reduced lifespans for SNs and insufficient gathering 
of data. In order to tackle this concern, it is important for 
decisions regarding the UAV’s movement to take into 
account not only its energy levels but also those of the SNs.

The UAV acts as a bridge between the SNs and GW, 
enabling the merging of data. If the transmission of data 
to the GW directly upon receiving it from the SNs were 
to occur immediately, the device’s energy would rapidly 
diminish. To prevent this, the UAV can combine data and 
delay transmission to the GW until it has accumulated a 
certain amount of data or is within proximity to the GW. 
This allows for simultaneous delivery of data in a single 
packet. However, excessive aggregation may result in 
obsolete data if the service update cycle ends before 
transmission to the GW. When making decisions about 
transmission operations, it is important to consider both 
the energy levels of the UAV and the service update cycle. 
For the efficient transfer of wireless power, it is presumed 
that the UAV employs a directional antenna set at a fixed 

angle. This implies that energy from the UAV can only 
be received by SNs positioned in matching locations on 
the ground plane with a location in the UAV plane. The 
energy consumption of the power transfer, denoted as , is 
not required for Sensor Nodes (SNs) having ample energy 
reserves. Moreover, should the UAV find itself distant from 
its charging site and rely too heavily on wireless power 
transfer, it could face difficulty returning as a result of 
energy exhaustion. Hence, when making decisions about 
wireless power transfer, one should consider the UAV’s 
current location and the energy levels of both the UAV and 
the SNs. The following section introduces a sophisticated 
Deep UAV algorithm, crafted to enhance movement, data 
transmission, and wireless power transfer all at once. In 
this algorithm, the controller consistently enhances the 
UAV’s operations through online training, refining its 
policies via a process of trial-and-error learning. This is 
accomplished by integrating observational data from the 
state and experiential knowledge into a nonlinear function 
approximator, more precisely, a neural network. The neural 
network undergoes iterative training to equip the controller 
with nearly optimal decisions for every state.

3.6 THROUGHPUT AWARE OPTIMIZATION

The Whale Optimization Algorithm (WOA) emerged in 
2016, drawing inspiration from the hunting techniques 
employed by humpback whales. This approach is designed 
to replicate the method used by humpback whales as 
they surround and follow their prey. The whales follow 
a two-stage process in their hunting activities, beginning 
with exploration and then moving on to exploitation. In 
the same manner, the WOA algorithm functions through 
two phases to navigate the search space effectively to find 
the best solutions. In the exploration stage, the algorithm 
sets its sights on the current best solution as its target 
prey. As the optimal solution is not known initially, the 
algorithm first considers the current leading candidate 

Figure 5. The act of bubble-net feeding performed by humpback whales
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as the target and then directs other possible solutions 
represented as “whales” to modify their positions in the 
search space accordingly. Figure 5 beautifully illustrates 
the cooperative hunting technique of whales, commonly 
referred to as bubble-net feeding. Whales employ circular 
or “9”-shaped movements, releasing bubbles to assist their 
hunting maneuvers in this strategy. Further exploration of 
this behavior has revealed its capability to mimic problem-
solving in optimization. The simulation explores the use of 
group searching, encircling, and pursuit techniques within 
a community of whales, offering valuable perspectives on 
innovative optimization strategies. 

If we consider a group of N whales in a search area defined 
by D dimensions, the location of each whale can be denoted 
as Xi = (Xi,1, Xi,2, …, Xi,D), where i represents their specific 
position in the group. When it comes to optimization, the 
whales are aiming to encircle their desired target prey by 
assessing the current best position within the group. This 
encourages them to shift their stances toward the optimal 
solution. This behavior assists in encircling the prey, 
and certain whales may also approach the most skilled 
individual for additional refinement. The repositioning 
process is directed by specific equations known as Eqs. 
Whales are prompted to gradually approach the target 
prey or the most suitable individual for encircling it in 
actions (23) and (24). The equations illustrate how the 
algorithm operates, showing how the whales navigate the 
search space to discover the most efficient solutions. The 
equations probably illustrate how solutions (UAV fog node 
coordinates) or “whales” adjust their positions around 
a hypothesized ideal solution, reflecting the algorithm’s 
process of both exploring and exploiting to discover the 
best placement for UAVs. The vector D ⃗ represents the 
difference between the product of vector C ⃗  and the most 
successful solution obtained at the current time (X ⃗  *), and  
the current solution X ⃗   (t) and X ⃗   (t+1). It then refines the 
current solution based on D, adjusting it towards the 
optimal solution (X ⃗  *) at time t by applying coefficient 

vectors A and C. These coefficients are derived from 
specific equations (25) and (26) that incorporate vectors a ⃗  
and r ⃗  . The calculation of A ⃗  and C ⃗  is determined by these 
equations.

 
   

D C X t X t� �� � �. ( ) ( )  (23)

 
   

X t X t A D( ) ( ) .� � �� � �1   (24)

  


  A a r a� �2 .  (25)

 


C r= 2.  (26)

The vector a ⃗  , gradually decreasing from 2 to 0 throughout 
iterations, holds significant importance in maintaining 
a balance between exploration and exploitation in the 
optimization process. In the same way, the random vector  r ⃗  ,  
where values fall between 0 and 1, brings a touch of 
unpredictability to the Whale Optimization Algorithm. 
The element of randomness allows every search agent, 
depicted as a solution, to navigate through various 
positions across the search space. This investigation 
helps prevent the algorithm from becoming trapped 
in local optima, enabling a wider array of potential 
outcomes. Therefore, the relationship between vector a ⃗    
 and  r ⃗   vector has a significant impact on both exploration 
and exploitation throughout the optimization process. 
Additionally, WOA incorporates two foraging techniques 
inspired by humpback whales to facilitate the exploration 
of the best solutions. The Shrinking Encircling Mechanism 
draws inspiration from the bubble net technique famously 
employed by humpback whales and plays a pivotal role 
in the strategy of the WOA. The primary goal of this 
algorithm is to reduce the coefficient vector A ⃗  by lowering 
the value of a ⃗  (as demonstrated in Equation. 25 could you 
please rephrase the previous information smoothly. During 

Figure 6. The most effective solution currently achieved is the Bubble-net search method (X*)
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this procedure, search agents adapt their positions towards 
a new location by striking a balance between their initial 
position and the most effective solution at present. This 

method emulates the concept of strategically surrounding 
and focusing on a promising solution. In the figure 6, 
we are presented with a visual representation illustrating 
the possible locations of a search agent as it moves from 
its starting coordinates (X,Y) to a fresh position (X’,Y’). 
This illustration clearly shows how the agent’s position 
changes over iterations within a specific parameter space, 
influenced by both the shrinking of vector a and random 
values of vector A ⃗  .

The algorithm utilizes a spiral motion to imitate the 
movement of humpback whales while foraging. The 
distance between the whales and the location of their 
prey, denoted as vector (D ⃗  ), needs to be determined. The 
calculation of (27) is done to establish their location. By 
employing a spiral equation with variables such as b, 
influencing the spiral’s shape, and a random number l, 
the agents’ positions are smoothly adjusted along a path 
that elegantly traces a spiral pattern bridging their present 
whereabouts and the most optimal solution discovered 
thus far. This approach replicates the effective way whales 
navigate through search areas. The image depicted in the 
figure. In the seventh section, it is illustrated how this 

Figure 7. The position is being updated in a spiral pattern

Algorithm 3. WOA

Input: The best search agent X* from a population of whales Xi (where i = 1,2,...,n)
Output: to Calculate fitness for a search agent

1. Begin by establishing the population of whales.
2. Evaluate the fitness of every search agent.
3. The best search agent is represented by X*. 
4. If the number of iterations remains below the maximum limit.
5. For each search agent:
6. Update parameters a, A, C, l, and p. 
7. If p is less than 0.5:
8. If 2 multiplied by the absolute value of A is less than 1:
9. Update the position of the current search agent using 

   

D C X t X t� � �.( )( ) ( )

10. End if statement.
11. Else if 2 multiplied by the absolute value of A is greater than or equal to I:
12. Select a random search agent Xrand.
13. Update the position of the current search agent using 

   

D C X Xrand� �.( ) .
14. End if statement.
15. End else statement.
16. Else if p is greater than or equal to 0.5:
17. Update the position of the current search agent using   

X t D e l X tb( ) cos( ) ( )� � � � � �1 21 � .
18. End if statement.
19. End else statement.
20. Verify whether any search agent has exceeded the search boundaries and make necessary adjustments to 

its position.
21. Determine the fitness level of every search agent.
22. If a more suitable solution is found, please make the necessary updates to X.
23. Increment iteration counter t by 1.
24. Return X* as the best solution found so far.
25. End algorithm.
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approach influences the way whales navigate around their 
prey. Their location gradually shifts using a probabilistic 
selection between two updating strategies: shrinking 
circles and spiral movement.

 
  

X t D e l X tb( ) cos( ) ( )� � � � � �1 21 �  (27)

Equation 28 employs probability-based selection to 
determine whether to use the mechanism is either referred 
to as the Shrinking Encircling Mechanism or the Spiral 
Updating Position and is structured in the following way:.


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 (28)

 
   

D C X Xrand� � �( )  (29)

 
   

X t X ADrand( ) ( ) .� � �1  (30)

The vector A ⃗  plays a crucial role in guiding the exploration 
phase of the Whale Optimization Algorithm (WOA). 
If magnitude of vector A ⃗  exceeds 1, it suggests that the 
algorithm is primarily inclined towards exploration. This 
phase focuses on refreshing the positions of the remaining 
search agents by considering the top solution discovered 
until now. Consequently, these search agents heavily 
depend on information obtained from the current best 
solution to direct their exploration within the search space. 
Therefore, the threshold of vector A plays a pivotal role 
in the algorithm by determining its exploration phase. 
It guarantees that once vector A ⃗  surpasses this limit, the 
emphasis remains on exploration. This guides the search 
agents to explore the search space effectively, drawing 
insights from the current optimal solution. Equations 
(29) and (30) embody a critical mathematical model that 
describes an exploration strategy in WOA. The vector  
X  ⃗  rand symbolizes a solution chosen at random from the 
existing pool of potential solutions. In our current scenario, 
we harness the power of WOA to enhance the placement 
of UAV fog nodes. This process consists of several key 
stages. At first, a collective of whales is formed, where 
each whale symbolizes a prospective spot for a UAV fog 
node across the search region. These whales consistently 
venture into and utilize the search area, dedicating specific 
phases to each task. While exploring, whales choose the 
optimal current solution as their target prey and lead 
other whales to adapt their positions accordingly. During 
the exploitation phase, the whales elegantly circle their 
target prey, carefully selecting the best candidate for 
further refinement. Equations tailored for the Weighted 
Optimization Algorithm determine these position 
adjustments according to the exploration and exploitation 
phases. The process continues cycling until a specific 
termination condition is fulfilled, indicating that the best 
solution discovered signifies the most optimal arrangement 

of UAV fog nodes. To enhance clarity, a visual flowchart 
illustrating the optimization process has been provided for 
an easier understanding of the steps.

3.7 DYNAMIC INTELLIGENT CHANNEL 
ASSIGNMENT MODEL

In this section, we will describe a single cycle of the 
DICOT-CUAV protocol, in which the deployed SNs 
are grouped into clusters. A UAV leads each cluster, 
functioning as a CH. It gathers data from its CMs and 
transmits it to the BS. Throughout every cycle, UAVs reach 
designated positions above the Area of Interest at a set 
altitude to maximize coverage of as many Sensor Nodes as 
feasible. Before utilizing unlicensed spectrum, the UAVs 
conduct a Clear Channel Assessment (CCA) to verify that 
the channel is available. Upon successful completion of 
the CCA process, the UAV swiftly transmits  WuCs to the 
ground SNs, thus commencing the cluster formation. After 
their formation, SNs within each cluster transition into 
becoming CMs dedicated to a particular UAV. This marks 
the commencement of the steady-state phase, during which 
data is gathered from the SNs on the ground. Once the data 
collection process is finished, CMs have the option to enter 
sleep mode, indicating the end of a single cycle. In the 
beginning stage, we will elucidate the process of cluster 
formation for a lone UAV in a single round, as illustrated 
in Figure 8. Since the clusters do not overlap and operate 
independently, the identical approach is applied to each 
formation. At the start of every round, all ground sensor 
nodes are in sleep mode, with their mobile relays turned 
off. Nevertheless, the WuRx consistently stays powered on, 
ready and waiting to receive a Wireless Command (WuC) 
from an UAV. When the SN’s WuRx detects a WuC from an 
incoming UAV that has completed CCA successfully, its 
MR is activated, a process that requires some time referred 
to as the mode switching time (MST). The SN proceeds 
with CSMA-CA protocol before transmitting a joining 
request as a response to the targeted UAV’s WuC signal. 
If several SNs receive the broadcasted WuC, each will 
attempt to send a separate joining request while they are in 
an active state. Nevertheless, collisions are bound to occur 
when transmitting these requests in reply to the WuC, as all 
SNs share channel access. To avoid collisions, we employ 
IEEE 802. 15. 4 non-beacon mode unslotted CSMA-CA to 
guarantee the successful transmission of joining requests 
from SNs to UAVs, as illustrated in the figure. It is crucial 
for the successful transmission of joining requests as this 
will determine if an SN will join in cluster formation. In 
unslotted non-beacon mode, CSMA-CA operates smoothly 
as each station gracefully adheres to a back-off algorithm. 
This involves patiently waiting for a random duration 
before assessing the channel’s status. If the channel is 
unoccupied, the station can send its request to join. In case 
the channel is occupied, the station will increase its back-
off counter and adjust the back-off exponent accordingly. 
The process keeps going until the station either reaches 
the maximum back-off attempts or successfully transmits 
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its request. The likelihood of channel occupancy following 
CCA, known as γ, plays a crucial role in analyzing the 
behavior of CSMA-CA. This can be computed through 
two mathematical models: M/G/1 and M/G/1/2. In this 
study, we employ the M/G/1/2 framework to ascertain the 
likelihood of a station being unable to join a cluster and 
consequently being excluded from participating in cluster 
formation, as expressed by.

 Pdrop
mac MAXCSMA Backoffs� ��   1  (31)

The probability of an SN being dropped and unable 
to participate in the current cluster formation for 
the UAV round is represented by Pdrop. The variable 
macMAXCSMABackoffs represents the limit for the 
number of CCA attempts allowed. In cases where an SN 
faces difficulty transmitting a join request, it enters a sleep 
mode to preserve energy. It is important to mention that 
the research does not cover the modeling of CSMA-CA. 
Concurrently with the CSMA-CA process, the station 
carefully readies data packets for sending. This procedure 
takes place at every SN in the Field of Interest (FoI), where 
it includes identifying WuC via the SN's WuRx, initiating 
the MR, generating data packets, executing CSMA-CA, 
and transmitting a request to join. The UAV gracefully 
accepts a connection request from every Sensor Node (SN). 
It then gracefully logs the Identity (ID) of each unique 
Sensor Node, marking them as Cluster Members (CMs) 
and allocating TDMA slots for their use. Consequently, 
a cluster is established where UAVs serve as Cluster 
Heads (CHs). This stage is commonly referred to as the 

setup phase, which is then succeeded by the steady-state 
phase. In the stable phase of DICOT-CUAV, a Sensor Node 
acting as a Cluster Member will receive a Time Division 
Multiple Access (TDMA) slot allocation from its Cluster 
Head, which is the Unmanned Aerial Vehicle (UAV). 
During this phase, the CM is tasked with transmitting its 
data packets within its allocated slot. After successfully 
sending the transmission, the UAV will promptly send 
an acknowledgment (ACK) to the ground station. Upon 
receiving the aacknowledgment the steady-state phase 
concludes, prompting the control module to deactivate 
its message receiver and transition into sleep mode, thus 
indicating the end of one cycle. The length and scheduling 
of each round are determined by the requirements of the 
application. Figure 8 elegantly presents a comprehensive 
overview of a singular round in the DICOT-CUAV 
routing protocol under consideration. The section labeled 
“Illustration of a single round of a UAV” within the dotted 
box visually details each step that occurs throughout this 
round. The figure is divided into two vertical boxes. On the 
left, we have “UAV-Aerial BS,” illustrating processes at the 
UAV like CCA and WuC transmission. On the right, we find 
“Ground Sensor Node,” showcasing processes at SNs such 
as reception, CSMA-CA, and joining request transmission. 
Furthermore, there are two horizontal boxes present. The 
upper box labeled “SETUP PHASE” involves activities 
such as cluster formation and TDMA slot allocation to 
sensor nodes. On the other hand, the lower box known as 
“STEADY STATE PHASE” covers tasks related to data 
transmission to the UAV and reception of acknowledgment 
(AcK) from it. The illustration clearly shows a full cycle in 
which all essential procedures occur in distinct boxes for 

Figure 8. Diagram depicting the proposed protocol
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both UAV and ground SNs. The setup phase and steady-
state phase are delicately enveloped within separate dotted 
boxes, each one symbolizing unique stages nestled within 
a single round of the envisioned protocol.

The Data Flow Model includes collecting information 
from deployed SNs via their designated TDMA slots. 
Subsequently, these sensor nodes forward the data packets 
to the assigned Cluster Head, which happens to be an 
Unmanned Aerial Vehicle. To guarantee the dependable 
transfer of data, a protocol known as selective repeat is 
employed, which is a type of automatic repeat request 
(ARQ) protocol. In DICOT-CUAV, the SN will discard 
any data packets that have been acknowledged by the UAV 
because of memory limitations. To ensure reliability, the 
SN needs to resend the data packets that have been sent 
but not yet acknowledged in the upcoming round. Having 
a reliable transmission of data between Sensor Nodes 
and Unmanned Aerial Vehicles is essential in Wireless 
Sensor Networks. Factors like the duration of TDMA slots 
allocated by the UAV and channel behavior can affect 
this transmission. Ensuring consistent channel conditions 
is crucial for precise data transmission. Frequent shifts 
in channel conditions may reduce the likelihood of 
receiving acknowledgments (ACK) for data packets from 
the UAV, leading to extended waiting periods for the SN 
and heightened energy usage. In these circumstances, 
the sensor node will hold onto the data packets for the 
upcoming UAV encounter, unable to store any more sensed 
data because of its limited memory capacity. Ensuring 
reliable data transmission requires careful consideration of 
the critical aspect of the TDMA slot length set by the UAV. 
If the TDMA slots are too brief, it may not be possible to 
effectively transmit all data packets within that allocated 
time interval. As a result, any remaining data packets will 
need to be queued for the upcoming UAV cycle. Hence, 
it is crucial to set the TDMA slot duration in a manner 
that ensures the successful transmission of all data packets 
within the designated time frame. If the TDMA slots are 
excessively long, this will lead to an extended period of 
hovering for the UAV. To guarantee dependable data 
transmission, it is crucial to finely tune parameters like 
TDMA slot duration, channel conditions, and UAV hover 
time. By optimizing these parameters, we can improve 
the dependability of data transmission and facilitate the 
smooth transfer of sensed data from the Sensor Network to 

the Unmanned Aerial Vehicle with minimal interruptions 
or data losses. Figure 9 beautifully depicts the complete 
operational process of the DICOT-CUAV protocol.

4. PERFORMANCE ANALYSIS

4.1 NETWORK THROUGHPUT

The rate of data transfer from a sender to a receptor 
over, or across different locations, is often called 
network throughput and is measured in bits per second. 
It includes network latency, packet loss, and protocol 
factors to accurately provide real transfer speeds. High 
network performance means efficient use of network 
capacity. The proposed DICOT-CUAV model incorporates 
clustering and TDMA slot allocation, while the inclusion 
of additional data transmission slots has resulted in lower 
collision rates and greater total data volume. The use of 
CSMA-CA ensures that the probability of packet collisions 
is reduced. Both UAVs and SNs contribute to the prolonged 
lifespan of nodes through their energy consumption. 
This is advantageous. CCA ensures that data packets are 
transmitted through cleaner channels, which can increase 
throughput.

4.2 POWER UTILIZATION

Energy consumption refers to the amount of electrical 
energy utilized by a system, device, or component to operate 
smoothly. System efficiency and power consumption 
are usually measured in watts. Optimizing energy use is 
important to improve energy efficiency and extend the 
life of battery devices. The way the DICOT-CUAV model 
works is by regulating the energy usage of both UAVs and 
SNs. To conserve energy, the UAV only moves at a fixed 
altitude and avoids unnecessary maneuvering. Avoiding 
unnecessary transfer of power to SNs that already have 
enough energy. Only the required retransmissions are 
utilized by the selective replay protocol, which prevents 
energy wastage in duplicate data transmissions.

4.3 ENERGY EFFICIENCY

The energy efficiency of a system or device represents how 
effectively it can carry out its intended function while using 
a minimal amount of energy. This useful yield is usually 

Figure 9. A visualization of the data movement in the context of DICOT-CUAV
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measured as a fraction of the total energy. Improving 
energy efficiency reduces energy waste and operating 
costs. By acting as a CH, the UAVs in the DICOT-CUAV 
model are highly energy efficient, which reduces the 
long-range energy consumption needed for data transfer. 
By utilizing multiple TDMA slots for transmission and 
collecting information from local satellites, the model 
can reduce collisions and energy consumption, ultimately 
saving significant amounts of energy. Energy consumption 
is minimal and data is transmitted with reliability.

4.4 DATA DELIVERY RATIO

The data transmission ratio gauges the amount 
of information sent from a source to its intended 
destination. Its importance lies in the ability to measure 
the reliability and efficiency of data transmission through 
network communications. A higher data transfer ratio 
means more efficient and reliable data transfer. A high 
data transfer ratio is a key feature of the DICOT-CUAV 
model. Its model relies on several techniques, including 
cluster-based data collection, TDMA slot allocation, 
ARQ protocol implementation (CCA), and adaptive 
data aggregation to ensure consistent transmission with 
minimal loss. This is achieved using various approaches. 
High data rates in WSNs can be maintained with the 
proposed model.

4.5 AVERAGE DELAY

The average delay represents the duration for data packets 
to travel across a network from one point to another, as 
explained earlier. All possible delays due to processing, 
queuing, delivery, and forwarding are listed. A lower 
average delay means a more responsive and efficient 
network. The average delay in the DICOT-CUAV model 
is relatively minor. Adaptive manipulation of data 
aggregation and channel conditions, the model’s well-
structured data transmission protocols, efficient use of 
TDMA slots (throughput control modules), and structured 
communication methods make it possible to reduce the 
time required for transmitting data from SNs to base 
station UAVs. High-speed data transmission in WSNs is a 
desirable outcome of the proposed model.

4.6 DATA LOSS RATIO

Data loss is the proportion of packets sent to the network 
minus the data packet that does not make it. It measures 
the reliability and efficiency of data transmission. A 
better data loss ratio leads to more flexible and reliable 
networks. The DICOT-CUAV model has a low data loss 
ratio. Effective communication protocols, dependable 
delivery mechanisms, and adaptive processing of data loss 
conditions are all key factors in reducing the probability 
that data will not be lost. Reliable data transmission in 
WSNs is facilitated by the proposed model.

4.7 ROUTING OVERHEAD

Routing overhead is the total expenditure of network 
resources for maintaining and managing routing tables and 
routes, which is known as the cost of routing. This includes 
bandwidth, processing power, and time spent on tasks 
such as route finding and maintenance.  The network’s 
overall efficiency and effectiveness may be negatively 
impacted by high routing costs. Despite the DICOT-CUAV 
model’s focus on efficient and reliable data transmission, 
the moderate to high routing overhead is inevitable due 
to dynamic clustering, UAV motion control, and channel 
estimation complexity. The model’s objective is to achieve 
greater data reliability, energy efficiency, and network 
throughput without incurring additional overhead.

4.8 EVALUATION OF AVERAGE REWARD 
AND SENSING ACCURACY

Each model’s performance is measured by the average 
reward assessment over time, which reflects the total benefit 
obtained. Sense accuracy evaluates each model’s ability to 
detect or sense targets with sufficient accuracy. By using 
both metrics, the model’s efficiency and dependability can 
be gauged as it moves through different time stages. Better 
model performance is equated to higher values.

5. RESULT AND DISCUSSION

As we discussed in the above section, we have calculated 
a list of performance metrics they are network throughput, 
power utilization, energy efficiency, data delivery ratio, 
average delay, data loss ratio, routing overhead, and 
average reward and sensing accuracy. This helps to 
showcase the development of DICOT-CUAV proposed 
with three existing techniques MOOUAV, EHUAVCR, 
and MUAVFD.

Figure 10, shows the throughput which compared 
the DICOT-CUAV proposed model with the MOOUAV 
model is 201.45 Kbps, the EHUAVCR model is 256.28 
Kbps, the MUAVFD model with 326.17 Kbps, where our 
DICOT-CUAV model achieve a high value 531.89 Kbps. 
Which compares to high utilization of throughput. Figure 11,  
performs power utilization with the existing model of 
MOOUAV model has 256.17 Joules, the EHUAVCR 
model has 201.71 Joules, the MUAVFD model is 125.31 
Joules, and our DICOT-CUAV model achieves low power 
utilization of 109.47 Joules. In Figure 12, the proposed 
model DICOT-CUAV model achieves a high energy 
efficiency of 89.74 %, when compared to our existing 
model MOOUAV model at 61.47 %, the EHUAVCR 
model achieves 69.25 %, and the MUAVFD model 
is 75.16 %. In Figure 13, data delivery is consumed by 
96.28 % of the DICOT-CUAV proposed model. Where 
the existing techniques are archives 75.28 %, 81.46%, 
and 86.74 %. Which is compared to a high proposed 
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Figure 10. Network throughput

Figure 12. Energy efficiency

Figure 11. Power utilization
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Figure 15. Data loss ratio

Figure 14. Average delay

Figure 13. Data delivery ratio
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model. The average delay is showcased in Figure 14, the 
existing techniques are archived higher than our DICOT-
CUAV proposed model. Where the MOOUAV model 
is 285.47 ms which very higher than all other models. 
The EHUAVCR and MUAVFD models are 203.78 ms 
and 156.89 ms. Our DICOT-CUAV model is archived 
109.25 ms which is less than other models. Figure 15, 
delivers the ratio of loss of the existing models MOOUAV 
model is 35.48 %, the EHUAVCR model is 31.47 %, and 
the MUAVFD model is 25.56 % where the DICOT-CUAV 
model achieves a less delay of 8.36 %. Figure 16 discusses 
the overhead of the MOOUAV model is archives high 
1568 packets, whereas the EHUAVCR model has 1025 
packets, the MUAVFD model has 892 packets, and our 
proposed model achieves less overhead when compared to 
the exiting technique’s 289 packets.

The effectiveness of the DICOT-CUAV model in various 
network and energy efficiency metrics is demonstrated 
through an evaluation. The model achieves high Figure 10.,  
throughput by utilizing efficient clustering, TDMA slot 

allocation, and CSMA-CA, which minimize collisions 
and maximize channel usage. Achieving optimal Fig 11, 
power utilization is possible by controlling the movement 
of UAVs and implementing specific retransmissions. 
UAVs and SN batteries can be extended using this 
method. UAVs that function as cluster heads save Fig 12, 
energy by reducing the need for extended data transfers, 
with additional features like TDMA slots and local data 
collection to minimize collisions. By utilizing cluster-
based data collection, adaptive dataset aggregate, and 
reliable protocols, the model can deliver high levels of 
information with minimal loss as discussed in Fig 15. Using 
adaptive aggregation and efficient TDMA allocation, the 
Fig 14, average delay is reduced to reduce packet delivery 
times. By utilizing reliable communication protocols, 
the data loss ratio is kept within acceptable limits, which 
enhances the reliability of the information. Dynamic 
clustering and channel estimation generate a moderate 
to high amount of Fig 16, routing overhead, but this is 
offset by improved data reliability and efficiency. The 
prototype displays a consistently high reward level and 

Figure 16. Routing overhead

Figure 17. Average reward and sensing accuracy
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precise sensing performance over time, indicating its 
effectiveness in providing significant rewards while 
maintaining accuracy. By optimizing data throughput, 
energy consumption, and reliable data delivery effectively, 
DICOT-CUAV is well-suited for resource-intensive 
environments like WSNs.

6. CONCLUSION

An integrated system of EH-UAV-CRN that integrates both 
primary and secondary networks with UAVs to improve 
the reliability of data transmission and communication. 
Dynamic network conditions are effectively managed 
in this model using channel models and optimization 
algorithms. Studies on spectrum sensing and adaptive 
transmission strategies are centered on reducing 
interference while optimizing spectrum utilization, which 
is crucial for maintaining coexistence between primary and 
secondary users. To address congestion and connectivity 
challenges in IoT networks, the DR-UAV routing protocol 
is an innovative solution. This protocol provides effective 
disaster and environmental monitoring solutions that 
require reliable communication. DICOT-CUAV is a 
comprehensive protocol that offers optimum performance 
for UAV-assisted data acquisition in WSNs DICOT-
CUAV’s combination of dynamic clustering, TDMA 
scheduling, and efficient data transmission strategies 
allows it to tackle the challenges of energy efficiency, data 
reliability, network coverage, etc. A consistent cycle is 
created by its repeated initialization, cluster formation, and 
steady-state data transmission in a variety of environmental 
conditions, guaranteeing reliable operation. Optimal data 
integrity is achieved through the selective repeat ARQ 
mechanism, which precisely manages all retransmissions 
and improves system reliability. DICOT-CUAV is an 
essential advancement in enhancing the performance and 
longevity of WSN applications that are UAV-compatible. 
Utilizing the EH-UAV-CRN combination with the DICOT-
CUAV protocol offers a complete solution for future 
wireless communication systems. The integration of UAV 
technologies with modern protocols will not only improve 
communications reliability and spectrum efficiency, but 
also provide a path for innovative uses in IoT, disaster 
management systems, and environmental monitoring. 
The well-structured blending of these technologies and 
protocols establishes a solid foundation for wireless 
network evolution, guaranteeing improved efficiency 
reliability as well as flexibility in harsh and ever-changing 
environments.
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