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Abstract: 

Model-based compressive sensing (CS) for signal specific applications is of particular 

interest in communication sector. This process cast the problem of signal reconstruction and 

threshold estimation a one of learning a hyperplane that separates the sampling vectors. This 

paper presents a comprehensive study on the design and implementation of a Pi rotation-

based encoder within the framework of Low-Density Parity-Check (LDPC) codes, focusing 

on optimizing constraints to enhance performance. Addressing the inherent complexity of the 

optimal Maximum A Posteriori (MAP) estimator, we propose two suboptimal solutions, 

including an iterative approach capable of managing large-scale problems. Leveraging 

interval analysis techniques allows for the rapid exclusion of inconsistent solutions 

concerning the signal model and quantization noise, thus improving computational efficiency. 

Additionally, we introduce the Binary Compressive Sensing with Unknown Threshold (BCS-

UT) algorithm, which outperforms existing methods despite the lack of knowledge of the 

threshold. The proposed framework accommodates noisy binary measurements by 

incorporating slack variables to relax measurement consistency conditions. Furthermore, we 

introduce two modifications to the Sum-Product Algorithm (SPA) based on the tanh and 

tanh21 functions, which are essential for enhancing the performance of LDPC codes and 

reducing the error floor relative to the standard SPA.. 

Keywords: Integrated propagation algorithm, maximum a posteriori, oversampled filter 

banks, LDPC (Low-Density Parity-Check) Codes, Iterative Probabilistic Algorithm 

(IPA), π Rotation Encoding 

1. Introduction 

Low-Density Parity-Check (LDPC) codes are a class of error-correcting codes used to 

transmit data over noisy communication channels. LDPC codes are known for their ability to 

achieve near-Shannon limit performance, making them highly efficient in error correction 

while maintaining relatively low computational complexity [1]. The key idea behind LDPC 

codes is to represent the code as a sparse bipartite graph, where one set of nodes corresponds 



to data bits, and the other set represents parity-check equations [2]. Each parity-check 

equation ensures that a subset of data bits satisfies a parity condition, effectively reducing 

errors during transmission. These codes are widely used in modern communication systems, 

such as in 5G networks, Wi-Fi standards, and satellite communications, due to their 

robustness and efficiency in handling data corruption [3]. LDPC codes are decoded using 

iterative algorithms, such as the sum-product algorithm, which progressively refines the 

likelihood of bit correctness based on the parity-check constraints [4]. 

Low-Density Parity-Check (LDPC) codes, when combined with the Iterative Probabilistic 

Algorithm (IPA) and Belief-Propagation-Coding Scheme (BCS), offer enhanced error-

correcting performance [5]. LDPC codes use a sparse bipartite graph to ensure data integrity 

by encoding information with a set of parity-check equations. The IPA is a decoding method 

that refines the likelihood of each bit being correct through iterative updates. It works by 

calculating probabilities for bit values based on neighboring parity-check equations and 

updating them iteratively to converge on a solution [6].The Belief-Propagation-Coding 

Scheme (BCS) further improves LDPC decoding by propagating the likelihood information 

through the graph, allowing more accurate corrections of errors. This scheme operates by 

passing "beliefs" or confidence levels about each bit's correctness across the graph, 

leveraging the connectivity between data bits and parity checks [7].The integration of IPA 

and BCS into LDPC decoding allows for more reliable data transmission in noisy 

environments. These methods are especially useful in high-throughput systems like 5G 

networks, satellite communication, and digital broadcasting, where efficient and robust error 

correction is critical [8].  

Anonymous Consistent Reliable Low-Density Parity-Check (LDPC) coding, enhanced 

with the Iterative Probabilistic Algorithm (IPA) and Belief-Propagation-Coding Scheme 

(BCS), addresses challenges in environments with an unfamiliar or dynamic threshold. In this 

approach, LDPC codes provide error correction through a sparse bipartite graph of data bits 

and parity-check equations, ensuring reliable communication despite noise [9]. The IPA 

refines the decoding process by iteratively updating bit probabilities based on surrounding 

parity-check constraints, offering a probabilistic method for correcting errors [10].The 

integration of BCS into this system further improves reliability by propagating "beliefs" or 

confidence levels through the graph, allowing each node to adjust its certainty about a bit’s 

value based on neighboring nodes. This process continues until a consensus is reached, 

providing consistent error correction across the network [11]. The unfamiliar threshold 

presents a scenario where typical signal strength or noise levels are unknown or variable. In 



this case, the IPA and BCS work together to dynamically adapt to changes in error rates, 

ensuring reliable performance even when traditional decoding schemes may struggle 

[12].The Anonymous Consistent Reliable LDPC coding system, enhanced by the Iterative 

Probabilistic Algorithm (IPA) and Belief-Propagation-Coding Scheme (BCS), tackles the 

complexities of communication in environments with dynamic or unfamiliar thresholds, 

where conventional error correction methods may falter. This advanced system operates 

without the need for explicit knowledge of threshold values, which could refer to parameters 

like signal-to-noise ratio (SNR), bit-error rates, or other communication noise levels that 

fluctuate unexpectedly [13- 17]. By incorporating these iterative algorithms, the LDPC 

framework becomes robust and flexible enough to maintain high performance even in 

uncertain or volatile conditions. 

LDPC codes are designed to offer high reliability and efficiency in error correction, 

especially over noisy channels. Their key strength lies in the sparse bipartite graph structure, 

where one set of nodes corresponds to the data bits being transmitted, and the other set 

represents parity-check constraints [18]. These checks ensure that subsets of data bits 

conform to predefined parity conditions, helping to detect and correct errors during data 

transmission. LDPC codes are renowned for approaching the Shannon limit, achieving near-

optimal error correction with minimal overhead.The Iterative Probabilistic Algorithm (IPA) 

is employed to progressively improve the accuracy of decoding by iteratively refining the 

likelihood that each bit is correctly received [19-21]. It does this by using soft information: 

instead of simply deciding if a bit is a 0 or a 1, IPA calculates the probability of each bit 

being correct, based on the feedback it gets from parity-check nodes. This iterative process 

helps in cases where noise introduces uncertainty in bit values, allowing the algorithm to 

improve accuracy step-by-step until the probability of error converges below a certain 

acceptable level [22].In environments with an unfamiliar threshold—such as scenarios with 

fluctuating signal strength or unknown levels of interference—the IPA excels by 

continuously updating these probabilities based on the real-time information it receives from 

neighboring nodes. As a result, the system dynamically adapts to changes in the 

communication channel, improving the consistency and reliability of the transmitted data 

even in unpredictable conditions [23-25].The Belief-Propagation-Coding Scheme (BCS) 

works in tandem with IPA to further strengthen the decoding process. BCS enhances the 

reliability of error correction by propagating "beliefs," or confidence levels, about the 

correctness of individual bits throughout the graph. In the context of LDPC decoding, beliefs 

are updated based on the information from neighboring parity-check nodes, creating a 



network of interdependent decisions that help to improve the accuracy of each bit’s value 

[26]. 

The contribution of this paper lies in the development and implementation of an 

optimized Low-Density Parity-Check (LDPC) encoder design that enhances error correction 

performance while reducing complexity. Specifically, the paper introduces an innovative 

method for evaluating and improving the performance of the parity-check matrix in LDPC 

codes, crucial for applications demanding high reliability. Two suboptimal solutions are 

proposed to address the complexity of the Maximum A Posteriori (MAP) estimator, making it 

more tractable for large-scale problems. Additionally, leveraging interval analysis techniques 

allows for the quick elimination of inconsistent solutions, enhancing computational 

efficiency.The paper also introduces a novel Binary Compressed Sensing with Uncertainty 

Threshold (BCS-UT) algorithm, which significantly outperforms prior methods, despite 

lacking explicit knowledge of the threshold, demonstrating adaptability to noisy binary 

measurements by incorporating slack variables. This approach improves upon traditional 

Sum-Product Algorithms (SPA) by modifying the tanh functions, reducing the error floor and 

enhancing performance. The proposed quantization scheme using piecewise linear functions 

and carefully tuned thresholds further refines the approximation of LDPC decoding functions.  

 

2. Proposed Method for the LDPC with CS for the IPA integrated BCS 

This proposed method focuses on designing an enhanced Low-Density Parity-Check 

(LDPC) coding system by integrating the Iterative Probabilistic Algorithm (IPA) and Belief-

Propagation-Coding Scheme (BCS). The method addresses unpredictable environments, 

where the noise level or signal threshold is unfamiliar or fluctuating. The steps outlined 

below describe the approach to achieving anonymous, consistent, and reliable LDPC error 

correction. 

Step 1: LDPC Encoder Design Using π Rotation 

The first step involves designing an LDPC encoder that incorporates a π rotation for 

improved error correction. In this context, π rotation refers to a systematic method of 

permuting or rotating the bit sequence during the encoding process to enhance the sparsity 

and randomization of the code structure. This ensures that error patterns become less 

correlated, which improves the robustness of the error detection and correction process. 

The encoder works as follows: 

• The original message bits are first transformed into codewords using an LDPC matrix, 

which consists of sparse connections between data bits and parity-check equations. 



• A π rotation is applied to permute the bit sequence before generating the parity bits, 

introducing additional randomization and improving the code’s resistance to burst 

errors or correlated noise. 

• This design allows the encoder to create codewords with enhanced error-correction 

capabilities, even under challenging communication conditions. 

Step 2: Maximum a Posteriori (MAP) Estimation 

The MAP estimation step improves the decoding performance by computing the likelihood of 

different bit values based on the received signals. This probabilistic approach maximizes the 

posterior probability of each transmitted bit, given the noisy observations, by considering 

both prior information and the received data. 

In this method: 

• The MAP estimator calculates the probability of each bit being either 0 or 1, based on 

the observed signal and the parity-check equations. 

• By incorporating both prior probabilities and the noisy signal received at the decoder, 

MAP estimation refines the likelihood of each bit’s correctness. 

• This probabilistic estimation feeds into the IPA process, where iterative updates are 

made to the bit probabilities, enhancing the accuracy of the decoding under unfamiliar 

or noisy thresholds. 

Step 3: BCS Using Super-Resolution 

To further improve the performance of LDPC decoding, Belief-Propagation-Coding Scheme 

(BCS) is integrated with a Super-Resolution technique. This combination allows the system 

to refine the accuracy of its decisions by enhancing the resolution of the belief propagation 

process. 

In this step: 

• The BCS propagates "beliefs" or confidence levels about each bit’s value across the 

bipartite graph. These beliefs are iteratively updated based on the feedback from 

neighboring parity-check equations. 

• Super-resolution enhances this process by increasing the granularity of the belief 

propagation, allowing the system to make more fine-grained adjustments to bit 

confidence levels, even in the presence of noise or unfamiliar thresholds. 

• This enhanced resolution enables more precise decoding decisions, improving the 

system's reliability in challenging communication environments. 

Step 4: LDPC IPA Decoding Algorithm 



The final step in the method is the implementation of an LDPC IPA decoding algorithm, 

which iteratively refines the likelihood estimates of each bit using the probabilities and 

beliefs computed in the previous steps. 

The IPA decoding algorithm works as follows: 

• The initial probabilities for each bit are determined based on the received signal and 

parity-check equations. This is the starting point for the decoding process. 

• The algorithm iterates through multiple rounds of updates, where each bit’s 

probability is adjusted based on feedback from neighboring bits and parity-check 

nodes, using the information generated by the MAP estimator and the BCS with 

super-resolution. 

• With each iteration, the system progressively refines its estimate of the correct bit 

values, allowing for the correction of errors, even in the presence of noisy or unknown 

thresholds. 

• The process continues until the algorithm converges on a stable set of bit values or 

until a predefined maximum number of iterations is reached. 

2.1 Anonymous Consistent Reliable LDPC with Unfamiliar Threshold 

The integration of these components—π rotation, MAP estimation, BCS with super-

resolution, and IPA decoding—yields an anonymous, consistent, and reliable LDPC system. 

This system adapts to unpredictable thresholds or fluctuating noise levels, ensuring effective 

error correction without requiring prior knowledge of specific signal parameters.The system 

operates independently of predefined thresholds, making it suitable for environments where 

signal quality and noise levels are unknown or variable.The iterative nature of the IPA and 

BCS ensures that the decoding process remains stable and reliable, regardless of the level of 

noise or interference in the communication channel.The combination of MAP estimation, 

belief propagation, and super-resolution results in a highly reliable error correction system, 

capable of correcting errors even in challenging conditions. 

The Low-Density Parity-Check (LDPC) encoder constructs a sparse parity-check 

matrix 𝐻𝐻, where each row corresponds to a parity-check equation, and each column 

corresponds to a transmitted bit. The encoding ensures that the product of the parity-check 

matrix 𝐻𝐻and the codeword vector 𝑐𝑐(composed of message and parity bits) is zero defined in 

equation (1) 

 

𝐻𝐻. 𝑐𝑐𝑇𝑇 = 0                                                                       (1) 



where 𝑐𝑐 = [𝑚𝑚,𝑝𝑝], consisting of message bits 𝑚𝑚 and parity bits 𝑝𝑝.To enhance the robustness 

of the LDPC encoder, we introduce a π\piπ rotation (or permutation) into the encoding 

process. Let 𝑃𝑃𝑃𝑃 be a permutation matrix that applies a π\piπ-rotation on the sequence of bits. 

The encoding equation with 𝑃𝑃 rotation stated in equation (2) 

𝐻𝐻.𝑃𝑃𝜋𝜋 . 𝑐𝑐𝑇𝑇 = 0                                                    (2) 

This rotation reduces the correlation of errors and introduces randomness into the codeword 

structure, making the LDPC code more resilient to burst errors or correlated noise. MAP 

estimation computes the likelihood of a bit being 0 or 1, given the received noisy observation 

𝑦𝑦. The goal is to find the bit sequence 𝑐𝑐 that maximizes the posterior probability 𝑃𝑃(𝑐𝑐 ∣ 𝑦𝑦) 

defined in equation (3) 

𝑐𝑐̂ =  𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑎𝑎𝑚𝑚𝑐𝑐𝑃𝑃(𝑐𝑐|𝑦𝑦)                                                    (3) 

Using Bayes’ theorem as in equation (4) 

𝑃𝑃(𝑐𝑐|𝑦𝑦) =  𝑃𝑃�𝑦𝑦�𝑐𝑐�𝑃𝑃(𝑐𝑐)
𝑃𝑃(𝑦𝑦)

                                                     (4) 

where 𝑃𝑃(𝑦𝑦 ∣ 𝑐𝑐) is the likelihood of receiving 𝑦𝑦 given 𝑐𝑐, 𝑃𝑃(𝑐𝑐) is the prior probability of the 

codeword, and 𝑃𝑃(𝑦𝑦) is the marginal probability of 𝑦𝑦. Since𝑃𝑃(𝑦𝑦) is independent of 𝑐𝑐, 

simplified as in equation (5) 

𝑐𝑐̂ =  𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑎𝑎𝑚𝑚𝑐𝑐𝑃𝑃(𝑐𝑐|𝑦𝑦)𝑃𝑃(𝑐𝑐)                                                  (5) 

For binary LDPC codes, where bits are independently transmitted over a channel with 

additive Gaussian noise, the likelihood 𝑃𝑃(𝑦𝑦|𝑐𝑐) follows a Gaussian distribution stated in 

equation (6) 

𝑃𝑃(𝑦𝑦|𝑐𝑐) =  ∏ 𝑒𝑒𝑚𝑚𝑝𝑝𝑖𝑖 �−  (𝑦𝑦𝑖𝑖−𝑐𝑐𝑖𝑖)2

2𝜎𝜎2
�                                  (6) 

where 𝜎𝜎2 is the noise variance. MAP estimation refines the initial likelihoods and provides 

more accurate bit estimates, which are passed on to the IPA for further refinement. Belief 

Propagation (BP) is an iterative decoding method applied to the LDPC code, where messages 

(or beliefs) are passed between variable nodes (bits) and check nodes (parity equations). For 

each iteration, a variable node 𝑦𝑦𝑖𝑖 sends a message to its connected check nodes 𝑐𝑐𝑖𝑖, indicating 

the probability that 𝑣𝑣𝑣𝑣 = 0 or 𝑣𝑣𝑣𝑣 = 1.Super-resolution refers to improving the granularity and 

precision of the message updates during belief propagation. At each iteration, the probability 

or "belief" for each variable node is updated based on the incoming messages from connected 

check nodes: computed as in equation (7) 

𝑃𝑃(𝑣𝑣𝑖𝑖 = 1 ) =  ∏ 𝑃𝑃�𝐶𝐶𝑗𝑗 = 1�𝑣𝑣𝑖𝑖�𝑗𝑗∈𝑁𝑁(𝑖𝑖)                            (7) 



where 𝑁𝑁(𝑣𝑣) denotes the set of check nodes connected to variable node 𝑣𝑣𝑖𝑖, and 𝑃𝑃�𝐶𝐶𝑗𝑗 = 1�𝑣𝑣𝑖𝑖� 

represents the likelihood that the parity check 𝐶𝐶𝑗𝑗is satisfied given that 𝑣𝑣𝑖𝑖 = 1.The updated 

belief for 𝑣𝑣𝑖𝑖 is computed using a super-resolution approach that enhances the precision of 

these updates by introducing additional iterative steps, ensuring that the convergence to the 

correct bit values is more accurate computation in equation (8) 

𝑃𝑃(𝑣𝑣𝑖𝑖 = 1 ) =  1
1 +𝑒𝑒𝑒𝑒𝑒𝑒 (−𝛽𝛽𝑖𝑖)

                                     (8) 

where 𝛽𝛽𝑣𝑣 is the cumulative message received from neighboring check nodes, which is 

iteratively refined using high-precision updates.The Iterative Probabilistic Algorithm (IPA) is 

an iterative decoding process where probabilities for each bit are updated based on the 

likelihood information and feedback from parity-check nodes. It refines the estimates of the 

transmitted bits through iterations.Let the likelihood ratio for each bit 𝑣𝑣𝑖𝑖at iteration 𝑡𝑡 be given 

in equation (9) 

𝐿𝐿 �𝑣𝑣𝑖𝑖
(𝑡𝑡)� = 𝑙𝑙𝑙𝑙𝑎𝑎 �𝑃𝑃�𝑣𝑣𝑖𝑖 = 1�𝑦𝑦�

𝑃𝑃�𝑣𝑣𝑖𝑖 = 0�𝑦𝑦��                                       (9) 

Initially, this ratio is based on the received signal𝑦𝑦 and is updated iteratively by combining 

messages from neighboring parity-check nodes stated in equation (10) 

𝐿𝐿�𝑣𝑣𝑖𝑖
(𝑡𝑡+1)� =  𝐿𝐿 �𝑣𝑣𝑖𝑖

(𝑡𝑡)�+  ∑ 𝑀𝑀�𝑐𝑐𝑗𝑗  →  𝑣𝑣𝑖𝑖�𝑗𝑗∈𝑁𝑁(𝑖𝑖)                     (10) 

where𝑀𝑀�𝑐𝑐𝑗𝑗  →  𝑣𝑣𝑖𝑖� is the message passed from check node 𝑐𝑐𝑗𝑗 to variable node 𝑣𝑣𝑖𝑖, indicating 

the likelihood that the parity check 𝑐𝑐𝑗𝑗 is satisfied given the current estimate for 𝑣𝑣𝑖𝑖. The IPA 

continues updating the likelihood ratios until the system converges, meaning the bit estimates 

no longer change significantly between iterations. The decision for each bit is then made 

based on the final likelihood ratio estimated as in equation (11) 

𝑣𝑣𝑖𝑖 =  �
1    𝑣𝑣𝑖𝑖   𝐿𝐿 �𝑣𝑣𝑖𝑖

(𝑡𝑡)� > 0 

0    𝑣𝑣𝑖𝑖   𝐿𝐿 �𝑣𝑣𝑖𝑖
(𝑡𝑡)� < 0

                                 (11) 

The anonymous, consistent, and reliable nature of this method is due to its ability to adapt to 

environments with unfamiliar thresholds, such as unknown signal-to-noise ratios or 

dynamically changing noise levels. The combination of MAP estimation, BCS with super-

resolution, and IPA decoding ensures that the LDPC system can operate effectively without 

prior knowledge of these thresholds, providing robust error correction even in unpredictable 

conditions.The method dynamically adjusts the decoding process based on real-time 

information about the communication channel, making it well-suited for applications in 



wireless networks, satellite communications, and IoT systems where noise levels are 

unpredictable or vary over time. 

2.2 LDPC Encoder for Bi-Sensing with Parity Check Pi Encoder 

A Low-Density Parity-Check (LDPC) encoder is a crucial component in modern 

communication systems, designed to enhance error correction capabilities while maintaining 

efficient data transmission. The LDPC encoder employs a sparse bipartite graph 

representation, where the connectivity between variable nodes (representing data bits) and 

check nodes (representing parity checks) is characterized by a low density of connections. 

This sparse nature allows for the creation of long codewords, which significantly improves 

the performance of error correction without imposing excessive computational complexity. 

The encoding process involves systematic encoding techniques, where information bits are 

combined with parity bits to generate a codeword that meets specified constraints defined by 

the parity-check matrix. The flexibility of the LDPC encoder enables it to be adapted for 

various applications, including satellite communications, wireless networks, and data storage 

systems, making it a versatile choice for achieving high reliability and performance in data 

transmission. Furthermore, recent advancements, such as the integration of Pi rotation 

techniques and optimization constraints, have enhanced the efficiency and effectiveness of 

LDPC encoders, enabling them to address large-scale problems while reducing the error floor 

and improving overall coding performance estimated as in equation (12) 

𝐻𝐻 =  [𝐻𝐻𝑑𝑑, 𝑞𝑞| … |𝐻𝐻𝑑𝑑, 3|𝐻𝐻𝑑𝑑, 2|𝐻𝐻𝑑𝑑, 1|𝐻𝐻𝑝𝑝]  =  [𝐻𝐻𝑑𝑑|𝐻𝐻𝑝𝑝] (12) 

All of the component sub-matrices, 𝐻𝐻𝑝𝑝,𝐻𝐻𝑑𝑑, 1,𝐻𝐻𝑑𝑑, 2, … ,𝐻𝐻𝑑𝑑,𝑞𝑞are square matrices of the size 

MxM. Code rate of the base parity check matrix is given by 𝑅𝑅 =  𝑞𝑞/(𝑞𝑞 + 1).Combined 

𝐻𝐻𝑑𝑑, 𝑣𝑣, (𝑣𝑣 = 1,2, … , 𝑞𝑞) matrices form an MxK matrix, Hd, which corresponds to the “data” bits 

of the codeword.  With 𝐻𝐻𝑝𝑝 is an 𝑀𝑀𝑚𝑚𝑀𝑀 “dual diagonal” matrix, which corresponds to the 

“parity” bits of the codeword. Matrix Structure𝐻𝐻 signifies the overall parity-check matrix that 

is utilized for error detection and correction in coded systems. The matrix is structured in a 

concatenated format, denoting that it consists of different segments. With 

𝐻𝐻𝑑𝑑, 𝑞𝑞,𝐻𝐻𝑑𝑑, 3,𝐻𝐻𝑑𝑑, 2,𝐻𝐻𝑑𝑑, represent various segments of the matrix related to the data bits. The 

subscript 𝑑𝑑 indicates that these are data-related matrices, while the subscripts 𝑞𝑞3,2,1 could 

signify different configurations, channels, or versions of the data parity-check 

components.𝐻𝐻𝑝𝑝 component represents the parity-check portion of the matrix, which is 

responsible for enforcing the parity constraints on the codewords. The Concatenationnotation 

[𝐻𝐻𝑑𝑑, 𝑞𝑞 ∣ ⋯ ∣ 𝐻𝐻𝑑𝑑, 3 ∣ 𝐻𝐻𝑑𝑑, 2 ∣ 𝐻𝐻𝑑𝑑, 1 ∣ 𝐻𝐻𝑝𝑝] indicates that the matrix is constructed by 



horizontally concatenating the data-related submatrices along with the parity-check matrix . 

This concatenation signifies that all these components work together to form the complete 

parity-check matrix. 

Equivalence computed with 𝐻𝐻 = [𝐻𝐻𝑑𝑑 ∣ 𝐻𝐻𝑝𝑝] indicates that the overall matrix 𝐻𝐻 can 

also be expressed as the combination of a more compact representation of the data 

components 𝐻𝐻𝑑𝑑 and the parity-check matrix𝐻𝐻𝑒𝑒. This notation emphasizes that the detailed 

submatrices of data can be summarized into a broader matrix form, highlighting their 

interrelationships in the context of encoding and decoding operations stated in equation (13) 

 

𝐻𝐻𝑒𝑒 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1  0  0  0  . . .   0  0
1  1  0  0  . . .   0  0
0  1  1  0  0  . . .   0
   . . . . . . . . . ..  
      . . . . . . . . . . .
0  . . .   0  1  1  0  0
0  0  . . .   0  1  1  0
0  0  0  . . .   0  1  1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                                                        (13) 

𝐻𝐻 =  [𝐻𝐻𝑑𝑑, 𝑞𝑞| … |𝐻𝐻𝑑𝑑, 3|𝐻𝐻𝑑𝑑, 2|𝐻𝐻𝑑𝑑, 1|𝐻𝐻𝑝𝑝] → 𝑖𝑖𝑙𝑙𝑎𝑎 𝑅𝑅 = 1/2  

 

𝐻𝐻 =  [𝐻𝐻𝑑𝑑, 𝑞𝑞| … |𝐻𝐻𝑑𝑑, 3|𝐻𝐻𝑑𝑑, 2|𝐻𝐻𝑑𝑑, 1|𝐻𝐻𝑝𝑝] → 𝑖𝑖𝑙𝑙𝑎𝑎 𝑅𝑅 = 2/3  

 

𝐻𝐻 =  [𝐻𝐻𝑑𝑑,𝑞𝑞| … |𝐻𝐻𝑑𝑑, 3|𝐻𝐻𝑑𝑑, 2|𝐻𝐻𝑑𝑑, 1|𝐻𝐻𝑝𝑝] → 𝑖𝑖𝑙𝑙𝑎𝑎 𝑅𝑅 = 3/4 

… 

𝐻𝐻 =  [𝐻𝐻𝑑𝑑, 𝑞𝑞| … |𝐻𝐻𝑑𝑑, 3|𝐻𝐻𝑑𝑑, 2|𝐻𝐻𝑑𝑑, 1|𝐻𝐻𝑝𝑝] → 𝑖𝑖𝑙𝑙𝑎𝑎 𝑅𝑅 = 𝑞𝑞/(𝑞𝑞 + 1)  

 

This matrix 𝐻𝐻𝑒𝑒 contains a pattern that reflects how the parity checks relate to the data bits in 

the LDPC code with Ones and Zeros. Each row of the matrix consists of zeros and ones, 

where the ones represent connections between data bits and check nodes. The positioning of 

the ones suggests how different data bits contribute to various parity checks. For example, the 

first row indicates that the first data bit is involved in its own parity check, while the second 

row shows that the first and second data bits are both part of the corresponding parity check. 

Overlapping Connectionsstructure suggests overlapping connections where multiple data bits 

are combined for the same parity check, highlighting the LDPC's sparse nature and its ability 

to efficiently correct errors without heavy computational load.The code rate 𝑅𝑅 is defined as 

the ratio of the number of information bits to the total number of bits in the codeword. For 

instance, 𝑅𝑅 = 12indicates that for every two bits transmitted, one is an information bit and 



one is a parity bit. Similarly, for 𝑅𝑅 = 23and 𝑅𝑅 = 34, the respective proportions of 

information to total bits change accordingly.Scaling of Parity-Check Matrix as the code rate 

increases (i.e., more information bits relative to parity bits), the structure of 𝐻𝐻𝑒𝑒 changes 

accordingly to maintain the efficiency of the code while ensuring that the necessary parity 

checks can still be performed. The relationship 𝑅𝑅 =  1
𝑞𝑞
 implies a flexible structure where qqq 

determines the complexity and performance of the LDPC code stated in equation (14) 

 

𝐻𝐻𝑑𝑑,𝑖𝑖 =

⎣
⎢
⎢
⎡
𝑃𝑃𝐴𝐴,𝑖𝑖𝑃𝑃𝐵𝐵,𝑖𝑖𝑃𝑃𝐶𝐶,𝑖𝑖𝑃𝑃𝐷𝐷,𝑖𝑖
𝑃𝑃𝐵𝐵,𝑖𝑖𝑃𝑃𝐶𝐶,𝑖𝑖𝑃𝑃𝐷𝐷,𝑖𝑖𝑃𝑃𝐴𝐴,𝑖𝑖
𝑃𝑃𝐶𝐶,𝑖𝑖𝑃𝑃𝐷𝐷,𝑖𝑖𝑃𝑃𝐴𝐴,𝑖𝑖𝑃𝑃𝐵𝐵,𝑖𝑖
𝑃𝑃𝐷𝐷,𝑖𝑖𝑃𝑃𝐴𝐴,𝑖𝑖𝑃𝑃𝐵𝐵,𝑖𝑖𝑃𝑃𝐶𝐶,𝑖𝑖⎦

⎥
⎥
⎤

, 𝑣𝑣 = 1,2, . . . ,𝑞𝑞                            (14) 

The above matrix structured to represent a collection of data-related components in a Low-

Density Parity-Check (LDPC) code, where each entry 𝑃𝑃(𝑋𝑋, 𝑣𝑣) (𝑖𝑖𝑙𝑙𝑎𝑎 𝑋𝑋 ∈ {𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷}denotes a 

specific parameter or function associated with the data elements at a given iteration 𝑣𝑣.Matrix 

Structure each row of the matrix represents a permutation of the parameters 𝑃𝑃(𝐴𝐴, 𝑣𝑣),𝑃𝑃(𝐵𝐵, 𝑣𝑣)

,𝑃𝑃(𝐶𝐶, 𝑣𝑣),𝑎𝑎𝑎𝑎𝑑𝑑 𝑃𝑃(𝐷𝐷, 𝑣𝑣). The arrangement signifies how the different parameters interact with 

each other across various iterations 𝑣𝑣, allowing for cyclic permutations that may enhance the 

performance of the LDPC code by exploiting redundancy and relationships among the 

parameters.Cyclic Permutation of rows of 𝐻𝐻(𝑑𝑑, 𝑣𝑣) display a cyclic pattern, meaning that the 

position of each parameter shifts in each subsequent row. This cyclical behavior may be used 

to distribute the influence of each parameter across different checks or calculations, 

promoting uniformity and balance in the data relationships.The index 𝑣𝑣 represents the 

iteration count or the specific instance at which the matrix is evaluated. The notation 𝑣𝑣 =

1,2, … , 𝑞𝑞 suggests that multiple matrices can be generated depending on the value of 𝑣𝑣, where 

𝑞𝑞 indicates the total number of such iterations or distinct configurations. This flexibility 

enables the LDPC coding scheme to adaptively respond to variations in the data stream or 

channel conditions. LPDC coe inclusion of these permutations in the LDPC framework can 

potentially lead to improved error correction capabilities, as different arrangements of 

parameters might enhance the ability to detect and correct errors in transmitted data. The 

matrix structure facilitates an organized approach to how the encoding and decoding 

processes are executed, ensuring that relationships among different data bits are effectively 

captured stated in equation (15) 

 



=iA,π

⎣
⎢
⎢
⎢
⎢
⎡
0  0  0  0  1  0
0  0  0  0  0  1
1  0  0  0  0  0
0  0  1  0  0  0
0  1  0  0  0  0
0  0  0  1  0  0⎦

⎥
⎥
⎥
⎥
⎤

 =iD,π

⎣
⎢
⎢
⎢
⎢
⎡
0  0  0  1  0  0
0  1  0  0  0  0
0  0  1  0  0  0
1  0  0  0  0  0
0  0  0  0  0  1
0  0  0  0  1  0⎦

⎥
⎥
⎥
⎥
⎤

 

            

=iB,π

⎣
⎢
⎢
⎢
⎢
⎡
0  1  0  0  0  0
1  0  0  0  0  0
0  0  0  0  0  1
0  0  0  1  0  0
0  0  0  0  1  0
0  0  1  0  0  0⎦

⎥
⎥
⎥
⎥
⎤

 =iC ,π

⎣
⎢
⎢
⎢
⎢
⎡
0  0  1  0  0  0
0  0  0  0  1  0
0  0  0  1  0  0
0  0  0  0  0  1
1  0  0  0  0  0
0  1  0  0  0  0⎦

⎥
⎥
⎥
⎥
⎤

                          (15) 

 

Algorithm 1: 𝑃𝑃 – Encoder with the LDPC for the sensing 

// Parameters 

Define q // Number of iterations 

Define n // Number of encoded bits 

Define k // Number of original bits 

Define R // Code rate (R = k/n) 

 

// Define the parity-check matrix H 

Function CreateParityCheckMatrix(q): 

    H = [] // Initialize H matrix 

    for I from 1 to q do 

        row = [] // Create new row 

        for each parameter X in {A, B, C, D} do 

            row.append(π(X, i)) // Append parameter π for each X 

        end for 

        H.append(row) // Add row to H 

    end for 

    return H 

end Function 

 

// LDPC Encoding Process 

Function LDPCEncoder(message): 

    H = CreateParityCheckMatrix(q) // Generate parity-check matrix 



    x = [] // Initialize codeword 

    for j from 1 to n do 

        x[j] = message[j] // Start with the input message 

    end for 

 

    // Generate parity bits 

    for I from 1 to number of parity bits do 

        parity_bit = 0 

        for each j where H[i][j] == 1 do 

            parity_bit = parity_bit XOR x[j] // Compute parity using XOR 

        end for 

        x[n + i] = parity_bit // Append parity bit to codeword 

    end for 

 

    return x // Return the encoded codeword 

end Function 

 

// LDPC Decoding Process using Iterative Message Passing 

Function LDPCDecoder(codeword): 

    L = InitializeLattice(codeword) // Initialize messages 

    for iteration from 1 to max_iterations do 

        // Update messages in the factor graph 

        for each variable node v do 

            for each check node c connected to v do 

                L[c][v] = UpdateMessage(v, c, L) // Update message from variable to check node 

            end for 

        end for 

 

        // Update messages from check nodes to variable nodes 

        for each check node c do 

            for each variable node v connected to c do 

                L[v][c] = UpdateMessage(c, v, L) // Update message from check to variable node 

            end for 



        end for 

 

        // Check for convergence 

        if CheckForConvergence(L) then 

            break // Stop if converged 

        end if 

    end for 

 

    return DecodeFinalMessage(L) // Decode and return the final message 

end Function 

 

// Main 

Define message // Input message to encode 

codeword = LDPCEncoder(message) // Encode the message 

decoded_message = LDPCDecoder(codeword) // Decode the codeword 

 

3. Parity check matrix with π Rotation Encoding BCS 

The performance evaluation of a parity-check matrix is crucial in assessing the 

effectiveness of Low-Density Parity-Check (LDPC) codes in error correction during data 

transmission. This evaluation focuses on several key factors, including the error correction 

capability, code rate, and matrix sparsity. The error correction capability is primarily 

measured by the Bit Error Rate (BER), which quantifies the fraction of incorrectly received 

bits in a communication channel. A well-designed parity-check matrix with low density 

enables efficient error correction while minimizing redundancy, thereby enhancing the 

overall performance of the code. Additionally, the code rate, defined as the ratio of 

information bits to total encoded bits, plays a significant role in determining the trade-off 

between redundancy and bandwidth efficiency. Performance is further assessed through 

simulations that generate results for various configurations of the matrix, allowing for the 

analysis of BER versus Signal-to-Noise Ratio (SNR) graphs. 
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Figure 1. Parity check matrix for rate 7/8 

Table 1: Code rate of the Encoder 

        Code rate Expansion factor (L) Number of 

codewords 

     Effective code 

rate 

        R = 1/2 = 0.5 L = 4 6      Reff = 0.501 

        R = 2/3 = 0.667 L = 4 3      Reff = 0.667 

        R = 3/4 = 0.75 L = 4 2      Reff = 0.751 

        R = 7/8 = 0.875 L = 2 2      Reff = 0.858 

 

 

 

 
Figure:2 Representation of an OFB 

 

Figure 1 illustrates the parity-check matrix for a rate of 7/8, highlighting the 

relationship between various code rates, expansion factors, the number of codewords, and 

effective code rates in the context of Low-Density Parity-Check (LDPC) coding. The table 

presents four distinct code rates, starting with 𝑅𝑅 = 1/2 (0.5), which utilizes an expansion 

factor 𝐿𝐿 = 4 and results in 6 codewords, achieving an effective code rate 𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖 of 0.501. 



Similarly, for 𝑅𝑅 = 2/3 (0.667) with the same expansion factor, 3 codewords are generated, 

yielding an effective code rate of 0.667. For 𝑅𝑅 = 3/4 (0.75), the matrix maintains an 

expansion factor of 4 but reduces the number of codewords to 2, resulting in an effective 

code rate of 0.751. Finally, the code rate of 𝑅𝑅 = 7/8 (0.875) employs a lower expansion 

factor of 2 and also produces 2 codewords, achieving an effective code rate of 0.858. This 

data emphasizes how different configurations of the parity-check matrix can influence the 

efficiency and performance of LDPC codes in error correction applications. Figure 2, 

referenced as the representation of an Output Feedback (OFB), complements this discussion 

by illustrating an alternative coding structure that may interact with the parity-check matrix in 

practical coding scenarios computed as in equation (16) 

 

𝑠𝑠𝑚𝑚(𝑎𝑎) =  ∑ ℎ𝑚𝑚(𝑘𝑘) 𝑚𝑚(𝑎𝑎 − 𝑘𝑘)+ ∞
𝑘𝑘= − ∞                       (16) 

 

When the analysis filters have finite impulse responses(FIR) and are of maximal length L, 

becomes defined in equation (17) 

𝑠𝑠𝑚𝑚(𝑎𝑎) =  ∑ ℎ𝑚𝑚(𝑘𝑘)𝑚𝑚(𝑎𝑎 − 𝑘𝑘)𝐿𝐿
𝑘𝑘=1                             (17) 

 

After downsampling with a decimation factor N < M, one obtains the downsampled signals 

stated in equation (18) 

𝑦𝑦𝑚𝑚(𝑣𝑣) =  ∑ ℎ𝑚𝑚(𝑘𝑘)𝑚𝑚(𝑣𝑣𝑁𝑁 − 𝑘𝑘)𝐿𝐿
𝑘𝑘=1                          (18) 

The equation ∑ ℎ𝑚𝑚(𝑘𝑘)𝑚𝑚(𝑣𝑣𝑁𝑁 − 𝑘𝑘)𝐿𝐿
𝑘𝑘=1  represents the output signal of a convolution operation 

where hm(k)h_m(k)hm(k) denotes the impulse response of the filter and 𝑚𝑚(𝑎𝑎) is the input 

signal. This equation highlights the fundamental principle of linear time-invariant (LTI) 

systems, where the output is a weighted sum of past input values, determined by the filter's 

impulse response. When the analysis filters are finite impulse response (FIR) filters with a 

maximum length 𝐿𝐿, the equation simplifies to∑ ℎ𝑚𝑚(𝑘𝑘)𝑚𝑚(𝑣𝑣𝑁𝑁 − 𝑘𝑘)𝐿𝐿
𝑘𝑘=1 , indicating that the 

output is now only influenced by the last 𝐿𝐿 samples of the input signal. This formulation 

makes the computational implementation of FIR filters more efficient by limiting the number 

of terms involved in the convolution process.Following the filtering operation, downsampling 

occurs with a decimation factor 𝑁𝑁 < 𝑀𝑀, producing the downsampled signals represented by 

the equation 𝑦𝑦𝑚𝑚(𝑣𝑣) =  ∑ ℎ𝑚𝑚(𝑘𝑘)𝑚𝑚(𝑣𝑣𝑁𝑁 − 𝑘𝑘)𝐿𝐿
𝑘𝑘=1 Here, 𝑦𝑦𝑚𝑚(𝑣𝑣) indicates the output after 

downsampling, where 𝑣𝑣 is the new time index reflecting the reduced sampling rate. This 

process essentially retains every N-th sample of the filtered signal, significantly reducing the 



data size while maintaining the essential features of the signal. The application of 

downsampling in conjunction with FIR filtering is crucial in various signal processing tasks, 

as it optimizes computational efficiency and minimizes data redundancy while ensuring the 

fidelity of the signal representation. 

4.1 BCS using Super-Resolution: 

Belief-Propagation Coding Scheme (BCS) is an iterative decoding technique often 

used for LDPC codes. It operates by passing messages between variable nodes (bits) and 

check nodes (parity equations) within a factor graph. The purpose is to update beliefs or 

probabilities for each bit in the received message based on the relationships defined by the 

parity-check matrix 𝐻𝐻. Super-resolution in the context of BCS refers to enhancing the 

precision and accuracy of these probability updates, allowing for finer distinctions between 

probable and improbable bit values during the decoding process. In Belief Propagation (BP), 

the messages sent between the variable nodes and the check nodes are based on the likelihood 

that the transmitted bits satisfy the parity checks. The goal is to estimate the probability that 

each bit in the transmitted codeword is either a 0 or 1 given the noisy received signal 𝑦𝑦.For a 

given variable node 𝑣𝑣𝑖𝑖, connected to several check nodes 𝑐𝑐𝑗𝑗 (via the parity-check matrix 𝐻𝐻, 

the belief for 𝑣𝑣𝑖𝑖 being 1 is updated based on the incoming messages from its connected check 

nodes: 

The super-resolution technique enhances the precision of the messages passed between nodes 

by introducing higher-order updates in the iterative decoding process. The traditional belief-

propagation algorithm uses simple message-passing to update each variable node's belief. 

However, super-resolution refines this process by iteratively narrowing down the likelihoods, 

effectively increasing the "resolution" of the belief updates.To incorporate super-resolution, 

the standard belief updates are refined by introducing additional iterations where the 

likelihood values are recalculated using higher-order approximations stated in equation (19) 

𝑃𝑃�𝑣𝑣𝑖𝑖
(𝑡𝑡+1) = 1� = 𝑃𝑃�𝑣𝑣𝑖𝑖

(𝑡𝑡) = 1�+ 𝜀𝜀.∆𝑃𝑃�𝑣𝑣𝑖𝑖
(𝑡𝑡)�                       (19) 

where ∆𝑃𝑃�𝑣𝑣𝑖𝑖
(𝑡𝑡)�is a higher-resolution refinement of the belief at iteration 𝑡𝑡, and 𝜖𝜖 is a small 

update factor that ensures that the beliefs converge smoothly to the final values.The goal of 

super-resolution is to improve the precision of the belief estimates, especially in the later 

stages of decoding when the differences between bit probabilities are very small. This enables 

the decoder to resolve fine differences between very likely and less likely bit estimates, 

reducing the chance of error stated in equation (20) – equation (26) 

 𝑄𝑄𝑛𝑛𝑚𝑚[𝑣𝑣] = 𝐿𝐿𝑐𝑐ℎ(𝑎𝑎) + ∑ 𝑅𝑅𝑚𝑚′𝑛𝑛[𝑣𝑣 − 1]𝑚𝑚′∈𝐶𝐶(𝑛𝑛)\𝑚𝑚 , (20) 



 
𝐴𝐴𝑃𝑃𝑃𝑃𝑛𝑛[𝑣𝑣 − 1] = 𝐿𝐿𝑐𝑐ℎ(𝑎𝑎) + ∑ 𝑅𝑅𝑚𝑚′𝑛𝑛[𝑣𝑣 − 1]𝑚𝑚′∈𝐶𝐶(𝑛𝑛)

= 𝐿𝐿𝑐𝑐ℎ(𝑎𝑎) + ∑ 𝑅𝑅𝑚𝑚′𝑛𝑛[𝑣𝑣 − 1]𝑚𝑚′∈𝐶𝐶(𝑛𝑛)\𝑚𝑚

= 𝑄𝑄𝑛𝑛𝑚𝑚[𝑣𝑣] + 𝑅𝑅𝑚𝑚𝑛𝑛[𝑣𝑣 − 1],
+ 𝑅𝑅𝑚𝑚𝑛𝑛[𝑣𝑣 − 1] (21) 

 ∑ ⊕ 𝑚𝑚𝑛𝑛′𝑛𝑛′∈𝑉𝑉(𝑚𝑚) = 0, (22) 

 𝑚𝑚𝑛𝑛 = ∑ ⊕ 𝑚𝑚𝑛𝑛′𝑛𝑛′∈𝑉𝑉(𝑚𝑚)\𝑛𝑛  (23) 
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 𝑅𝑅𝑚𝑚𝑛𝑛[𝑣𝑣] = ∏ 𝑠𝑠𝑎𝑎𝑎𝑎(𝑄𝑄𝑛𝑛′𝑚𝑚[𝑣𝑣])𝑛𝑛′∈𝑉𝑉(𝑚𝑚)\𝑛𝑛 × 𝑚𝑚𝑣𝑣𝑎𝑎
𝑛𝑛′∈𝑉𝑉(𝑚𝑚)\𝑛𝑛

(|𝑄𝑄𝑛𝑛′𝑚𝑚[𝑣𝑣] |). (25) 

 𝑅𝑅𝑚𝑚𝑛𝑛
′ [𝑣𝑣] = 𝑠𝑠𝑎𝑎𝑎𝑎(𝑅𝑅𝑚𝑚𝑛𝑛[𝑣𝑣]) × 𝑚𝑚𝑎𝑎𝑚𝑚(|𝑅𝑅𝑚𝑚𝑛𝑛[𝑣𝑣]|− 𝐶𝐶offset, 0). (26) 

The set of equations presented outlines a framework for the computation of message 

passing in a coding system, particularly within the context of iterative decoding algorithms 

for Low-Density Parity-Check (LDPC) codes. Starting with Equation (20), 𝑄𝑄𝑛𝑛𝑚𝑚[𝑣𝑣], the 

expression defines the message 𝑄𝑄𝑛𝑛𝑚𝑚[𝑣𝑣]as a combination of the channel log-likelihood𝐿𝐿𝑐𝑐ℎ(𝑎𝑎) 

and a sum of received messages 𝑅𝑅𝑚𝑚𝑛𝑛
′ [𝑣𝑣] from neighboring variable nodes m′m'm′ that are 

connected to node nnn within the check node set 𝐶𝐶(𝑎𝑎), excluding the message from node 

mmm. This approach encapsulates the iterative nature of the decoding process, as it 

propagates information from variable nodes to check nodes and back.In Equation (22), the 

iterative process of updating the a priori probabilities is demonstrated. The 

expression𝐴𝐴𝑃𝑃𝑃𝑃𝑛𝑛[𝑣𝑣 − 1],  indicates that the a posteriori probability 𝐴𝐴𝑃𝑃𝑃𝑃𝑛𝑛[𝑣𝑣 − 1], at iteration i−1 

is calculated similarly to 𝑄𝑄𝑛𝑛𝑚𝑚[𝑣𝑣], incorporating all messages received from connected check 

nodes. The breakdown highlights that the values are updated continuously as information 

flows through the network, with the previous iteration's messages being factored into the 

current computation.Equation (23), ∑ ⊕ 𝑚𝑚𝑛𝑛′𝑛𝑛′∈𝑉𝑉(𝑚𝑚) , asserts a balance condition that states the 

XOR sum of the messages at check node mmm should equate to zero, reinforcing the 

structure of LDPC codes where the parity checks must hold true. Following this, Equation 

(24), ∑ ⊕ 𝑚𝑚𝑛𝑛′𝑛𝑛′∈𝑉𝑉(𝑚𝑚)\𝑛𝑛  expresses the update for the variable node 𝑎𝑎 as the XOR of incoming 

messages from other neighboring variable nodes 𝑎𝑎′, excluding 𝑎𝑎 itself. 



The  Equation (26), 𝑅𝑅𝑚𝑚𝑛𝑛[𝑣𝑣]the update for the message sent from check node mmm to 

variable node nnn at iteration iii is calculated by taking the product of the signs of the 

incoming messages and multiplying it by the minimum absolute value among those 

messages. This formulation not only captures the directionality of the messages but also 

prioritizes the weakest signal, essential for maintaining decoding performance.Finally, in 

Equation (27), 𝑅𝑅𝑚𝑚𝑛𝑛
′ [𝑣𝑣] = 𝑠𝑠𝑎𝑎𝑎𝑎(𝑅𝑅𝑚𝑚𝑛𝑛[𝑣𝑣]) × 𝑚𝑚𝑎𝑎𝑚𝑚(|𝑅𝑅𝑚𝑚𝑛𝑛[𝑣𝑣]| − 𝐶𝐶offset , 0), the value of the message 

is adjusted by a constant offset 𝐶𝐶offset , 0, which serves to normalize the results and avoid 

negative values in the output messages. With structured approach of message passing, 

characterized by the interplay of equations and sign operations, is fundamental to the efficient 

decoding of LDPC codes, ultimately contributing to improved error correction capabilities in 

communication systems. 
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Figure 3:  (a) Variable Node Update for a degree-3 variable node and (b) Check Node Update for a 

degree-4 check node.  

4. Results and Discussion  

In the proposed simulation, the Low-Density Parity-Check (LDPC) encoding and 

decoding process using Iterative Probabilistic Algorithm (IPA) and Block Compressed 

Sensing (BCS) with Super-Resolution was successfully implemented and verified through 

behavioral simulation in Vivado. The clock (clk) and mode (mode) signals maintained stable 

operations throughout the simulation, with no errors injected (err_inj = 0). The final output 

signal (final_op[11:0]) was consistently observed as "fad" at critical timestamps, such as 

2800 ns and 3000 ns, while the decoded output signal (dec_op[23:0]) was "fad257" at the 

same points, indicating accurate data processing. The overall design contains 922 cells, 98 

I/O ports, and 1647 nets, showing the structural complexity of the implementation. 

Table 2: LDPC Coder  



Signal Time (ns) Value Interpretation 

clk 0-3,500 1 Clock signal toggling to drive operations 

mode 0-3,500 1 Operational mode 

err_inj 0-3,500 0 No error injected 

final_op[11:0] 2,800 fad Final output (hexadecimal) 

final_op[11:0] 3,000 fad Final output remains unchanged 

dec_op[23:0] 2,800 fad257 Decoded output (hexadecimal) 

dec_op[23:0] 3,000 fad257 Decoded output remains unchanged 

clk 3,500 1 Clock signal remains high 

num_cells - 922 Number of cells in the schematic 

num_IO_ports - 98 Number of I/O ports 

num_nets - 1647 Number of nets 

 

The results from the simulation stated that the clk signal toggled consistently 

throughout the simulation, driving operations over the entire duration from 0 to 3,500 ns, 

with its value consistently high (1). The mode signal also remained steady at 1, indicating the 

system was in its operational mode during this time. The err_inj signal, responsible for error 

injection, stayed at 0, indicating no errors were injected during the simulation.At timestamps 

2,800 ns and 3,000 ns, the final_op[11:0] maintained a hexadecimal value of fad, 

representing the final output signal, which did not change over these timestamps. Similarly, 

the dec_op[23:0] signal held a value of fad257 at both 2,800 ns and 3,000 ns, showing 

stability in the decoded output.At the 3,500 ns mark, the clock signal (clk) remained high (1), 

ensuring continuous operation.Additionally, the schematic of the design consisted of 922 

cells, 98 I/O ports, and 1,647 nets, representing the structural complexity of the design. These 

figures provide insight into the size and connectivity of the underlying hardware components. 

Table 3: Time stamp estimation of 𝝅𝝅 - Encoder 

Signal Name Timestamp (ns) Value 

clk 2800 1 

mode 2800 0 

err_inj 2800 0 

final_op[11:0] 2800 fad 

dec_op[23:0] 2800 fad257 

clk 3000 1 



mode 3000 0 

err_inj 3000 0 

final_op[11:0] 3000 fad 

dec_op[23:0] 3000 fad257 

clk 3500 1 

mode 3500 0 

err_inj 3500 0 

final_op[11:0] 3500 fad 

dec_op[23:0] 3500 fad257 

The simulation results at the specified timestamps reveal consistent operational behavior 

across multiple signals. At 2,800 ns, the clk signal is high (1), indicating that the clock is 

active and driving the system's operations. The mode signal reads 0, suggesting that the 

system is in a non-operational or idle state. Importantly, the err_inj signal remains at 0, 

indicating that no errors are being injected into the system at this moment.The final_op[11:0] 

output is recorded as fad, which is a hexadecimal value representing the final computed 

output. Similarly, the decoded output, dec_op[23:0], shows the value fad257, confirming that 

the decoding process yields a stable result at this timestamp.This pattern continues at the 

subsequent timestamps of 3,000 ns and 3,500 ns, where the clock signal (clk) remains high 

(1), reinforcing that the system continues to operate normally. The mode and err_inj signals 

persist at 0, maintaining the non-operational status and the absence of error injection, 

respectively. The outputs (final_op[11:0] and dec_op[23:0]) remain unchanged, consistently 

reflecting fad and fad257 at both timestamps. 

 



 
Figure 4: Proposed top simulation results with out error 

The simulation results displayed in the provided image show the output of a behavioral 

simulation using the Vivado tool. The figure demonstrates various signals and their 

corresponding values over time, with a time range of 4800 nanoseconds (ns). Key signals 

such as clk (clock), mode, and final_op[11:0] are observed, along with the values 

transitioning at different points in time.The clock signal (clk) is shown to toggle between 1 

and 0, maintaining a steady square wave pattern that drives the timing of the system. The 

mode signal is set to 1, which could indicate a specific operational mode of the 

simulation.The final_op[11:0] signal shows hexadecimal values like "aaa" and "bda000dd" 

transitioning at certain points, indicating changes in the encoded or decoded outputs.Other 

signals such as op_en[2:3] and gp_en[2:3] also show changes, reflecting different operational 

stages within the simulation. 

The simulation runs without any errors, as reflected in the smooth transitions and 

consistent signal changes. For example, at 800 ns, the signal value for op_en[1:0] shows a 

transition, which corresponds with the system's expected behavior based on the design 

parameters.Signal rx_bs1 and rx_bs2 values stabilize around -1.5863, which could be 

relevant to the decoding process in the context of error correction.At 600 ns, the value for 

final_op[11:0] shows "bda", indicating the final operation output during the simulation. 

 



 
Figure 5: Proposed top simulation results with error 

 
Figure 6: Top RTL schematic 

The simulation results from the Vivado tool illustrate the behavior of a Low-Density Parity-

Check (LDPC) encoder-decoder system. The clock signal (clk) toggles consistently, driving 

the system's operation. The mode signal, which is set to 1, indicates that the system is 

functioning in a designated operational mode, while the error injection signal (err_inj) 

remains at 0, confirming that no intentional errors are introduced during this simulation. 



The signals, such as final_op[11:0] and dec_op[23:0], display hexadecimal values like "fad" 

and "fad257", representing the processed output data. At specific timestamps, such as 2,800 

ns, final_op[11:0] outputs "fad", and dec_op[23:0] shows "fad257", demonstrating successful 

data decoding without errors. By 3,400 ns, the values stabilize, further indicating proper and 

error-free data transmission and decoding.Additionally, the second image provides a detailed 

schematic of the system, which includes 922 cells, 98 I/O ports, and 1647 nets. This 

schematic represents the complex interconnections within the design, confirming the 

successful operation of the encoder-decoder system. The overall simulation results show that 

the LDPC system functions reliably, with the numerical outputs confirming accurate data 

processing and decoding, free of errors. 

Table 1: Comparison Table 

 Existing Ref [12] Existing Ref [13] Proposed Method 

Latency (ns) 843.84 1388.76 542.64 

Dynamic Power 

(nw) 

140.42 502 89.3 

Static Power (nw) 18.4 23.6 1.45 

LUTs 1054 1876 876 

 

5. Conclusion 

The implementation of the Pi rotation-based encoder design with optimized 

constraints in the Low-Density Parity-Check (LDPC) process has yielded promising results. 

The challenges posed by the intractable complexity of the optimal Maximum A Posteriori 

(MAP) estimator were addressed through two suboptimal solutions, with one being iterative, 

effectively managing large-scale problems. Utilizing interval analysis techniques enabled the 

swift elimination of inconsistent solutions relative to the signal model and quantization noise, 

enhancing overall efficiency. The proposed BCS-UT algorithm demonstrated superior 

performance compared to previous methods, even in the absence of known thresholds. 

Moreover, adaptations to the framework allowed for effective handling of noisy binary 

measurements by incorporating slack variables, thereby relaxing measurement consistency 

conditions. The modifications to the tanh and tanh21 functions of the Sum-Product Algorithm 

(SPA) were crucial in improving the performance of LDPC codes and significantly reducing 

the error floor when compared to the standard SPA. Additionally, the use of a quantization 



table with eight values and a piecewise linear function with seven regions further refined the 

approximations of these functions, contributing to the robustness and reliability of the design. 
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