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SUMMARY 

 

Model-based compressive sensing (CS) for signal specific applications is of particular interest in communication sector. 

This process cast the problem of signal reconstruction and threshold estimation a one of learning a hyperplane that separates 

the sampling vectors. This paper presents a comprehensive study on the design and implementation of a Pi rotation- 

based encoder within the framework of Low-Density Parity-Check (LDPC) codes, focusing on optimizing constraints to 

enhance performance. Addressing the inherent complexity of the optimal Maximum A Posteriori (MAP) estimator, we 

propose two suboptimal solutions, including an iterative approach capable of managing large-scale problems. Leveraging 

interval analysis techniques allows for the rapid exclusion of inconsistent solutions concerning the signal model and 

quantization noise, thus improving computational efficiency. Additionally, we introduce the Binary Compressive Sensing 

with Unknown Threshold (BCS-UT) algorithm, which outperforms existing methods despite the lack of knowledge of the 

threshold. The proposed framework accommodates noisy binary measurements by incorporating slack variables to relax 

measurement consistency conditions. Furthermore, we introduce two modifications to the Sum-Product Algorithm (SPA) 

based on the tanh and tanh21 functions, which are essential for enhancing the performance of LDPC codes and reducing 

the error floor relative to the standard SPA. 

 

KEY WORDS: Integrated propagation algorithm, maximum a posteriori, oversampled filter banks, LDPC (Low-Density 

Parity-Check) Codes, Iterative Probabilistic Algorithm (IPA), π Rotation Encoding 

 

1. INTRODUCTION 

 

Low-Density Parity-Check (LDPC) codes are a class of 

error-correcting codes used to transmit data over noisy 

communication channels. LDPC codes are known for their 

ability to achieve near-Shannon limit performance, making 

them highly efficient in error correction while maintaining 

relatively low computational complexity [1]. The key idea 

behind LDPC codes is to represent the code as a sparse 

bipartite graph, where one set of nodes corresponds to data 

bits, and the other set represents parity-check equations 

[2]. Each parity-check equation ensures that a subset of 

data bits satisfies a parity condition, effectively reducing 

errors during transmission. These codes are widely used in 

modern communication systems, such as in 5G networks, 

Wi-Fi standards, and satellite communications, due to their 

robustness and efficiency in handling data corruption [3]. 

LDPC codes are decoded using iterative algorithms, such 

as the sum-product algorithm, which progressively refines 

the likelihood of bit correctness based on the parity-check 

constraints [4]. 

 

Low-Density Parity-Check (LDPC) codes, when 

combined with the Iterative Probabilistic Algorithm (IPA) 

and Belief-Propagation-Coding Scheme (BCS), offer 

enhanced error-correcting performance [5]. LDPC codes 

use a sparse bipartite graph to ensure data integrity by 

encoding information with a set of parity-check equations. 

The IPA is a decoding method that refines the likelihood 

of each bit being correct through iterative updates. It 

works by calculating probabilities for bit values based on 

neighboring parity-check equations and updating them 

iteratively to converge on a solution [6]. The Belief- 

Propagation-Coding Scheme (BCS) further improves 

LDPC decoding by propagating the likelihood information 

through the graph, allowing more accurate corrections 

of errors. This scheme operates by passing “beliefs” or 

confidence levels about each bit’s correctness across the 

graph, leveraging the connectivity between data bits and 

parity checks [7]. The integration of IPA and BCS into 

LDPC decoding allows for more reliable data transmission 

in noisy environments. These methods are especially 

useful in high-throughput systems like 5G networks, 

satellite communication, and digital broadcasting, where 

efficient and robust error correction is critical [8]. 

 

Anonymous  Consistent  Reliable  Low-Density 

Parity-Check  (LDPC)  coding,  enhanced  with  the 
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Iterative Probabilistic Algorithm (IPA) and Belief- 

Propagation-Coding Scheme (BCS), addresses challenges 

in environments with an unfamiliar or dynamic threshold. 

In this approach, LDPC codes provide error correction 

through a sparse bipartite graph of data bits and parity- 

check equations, ensuring reliable communication 

despite noise [9]. The IPA refines the decoding process by 

iteratively updating bit probabilities based on surrounding 

parity-check constraints, offering a probabilistic method 

for correcting errors [10]. The integration of BCS into 

this system further improves reliability by propagating 

“beliefs” or confidence levels through the graph, allowing 

each node to adjust its certainty about a bit’s value based on 

neighboring nodes. This process continues until a consensus 

is reached, providing consistent error correction across the 

network [11]. The unfamiliar threshold presents a scenario 

where typical signal strength or noise levels are unknown 

or variable. In this case, the IPA and BCS work together 

to dynamically adapt to changes in error rates, ensuring 

reliable performance even when traditional decoding 

schemes may struggle [12]. The Anonymous Consistent 

Reliable LDPC coding system, enhanced by the Iterative 

Probabilistic Algorithm (IPA) and Belief-Propagation- 

Coding Scheme (BCS), tackles the complexities of 

communication in environments with dynamic or 

unfamiliar thresholds, where conventional error correction 

methods may falter. This advanced system operates without 

the need for explicit knowledge of threshold values, which 

could refer to parameters like signal-to-noise ratio (SNR), 

bit-error rates, or other communication noise levels that 

fluctuate unexpectedly [13−17]. By incorporating these 

iterative algorithms, the LDPC framework becomes robust 

and flexible enough to maintain high performance even in 

uncertain or volatile conditions. 

 

LDPC codes are designed to offer high reliability and 

efficiency in error correction, especially over noisy 

channels. Their key strength lies in the sparse bipartite 

graph structure, where one set of nodes corresponds to the 

data bits being transmitted, and the other set represents 

parity-check constraints [18]. These checks ensure 

that subsets of data bits conform to predefined parity 

conditions, helping to detect and correct errors during data 

transmission. LDPC codes are renowned for approaching 

the Shannon limit, achieving near-optimal error correction 

with minimal overhead. The Iterative Probabilistic 

Algorithm (IPA) is employed to progressively improve the 

accuracy of decoding by iteratively refining the likelihood 

that each bit is correctly received [19−21]. It does this by 

using soft information: instead of simply deciding if a bit 

is a 0 or a 1, IPA calculates the probability of each bit being 

correct, based on the feedback it gets from parity-check 

nodes. This iterative process helps in cases where noise 

introduces uncertainty in bit values, allowing the algorithm 

to improve accuracy step-by-step until the probability 

of error converges below a certain acceptable level [22]. 

In environments with an unfamiliar threshold—such as 

scenarios with fluctuating signal strength or unknown levels 

of interference—the IPA excels by continuously updating 

these probabilities based on the real-time information it 

receives from neighboring nodes. As a result, the system 

dynamically adapts to changes in the communication 

channel, improving the consistency and reliability of the 

transmitted data even in unpredictable conditions [23−25]. 

The Belief-Propagation-Coding Scheme (BCS) works 

in tandem with IPA to further strengthen the decoding 

process. BCS enhances the reliability of error correction 

by propagating “beliefs,” or confidence levels, about the 

correctness of individual bits throughout the graph. In the 

context of LDPC decoding, beliefs are updated based on 

the information from neighboring parity-check nodes, 

creating a network of interdependent decisions that help to 

improve the accuracy of each bit’s value [26]. 

 

The contribution of this paper lies in the development and 

implementation of an optimized Low-Density Parity-Check 

(LDPC) encoder design that enhances error correction 

performance while reducing complexity. Specifically, the 

paper introduces an innovative method for evaluating and 

improving the performance of the parity-check matrix 

in LDPC codes, crucial for applications demanding high 

reliability. Two suboptimal solutions are proposed to 

address the complexity of the Maximum A Posteriori (MAP) 

estimator, making it more tractable for large-scale problems. 

Additionally, leveraging interval analysis techniques allows 

for the quick elimination of inconsistent solutions, enhancing 

computational efficiency. The paper also introduces a novel 

Binary Compressed Sensing with Uncertainty Threshold 

(BCS-UT) algorithm, which significantly outperforms prior 

methods, despite lacking explicit knowledge of the threshold, 

demonstrating adaptability to noisy binary measurements by 

incorporating slack variables. This approach improves upon 

traditional Sum-Product Algorithms (SPA) by modifying 

the tanh functions, reducing the error floor and enhancing 

performance. The proposed quantization scheme using 

piecewise linear functions and carefully tuned thresholds 

further refines the approximation of LDPC decoding 

functions. 

 

2. PROPOSED METHOD FOR THE LDPC 

WITH CS FOR THE IPA INTEGRATED 

BCS 

 

This proposed method focuses on designing an enhanced 

Low-Density Parity-Check (LDPC) coding system by 

integrating the Iterative Probabilistic Algorithm (IPA) and 

Belief-Propagation-Coding Scheme (BCS). The method 

addresses unpredictable environments, where the noise 

level or signal threshold is unfamiliar or fluctuating. The 

steps outlined below describe the approach to achieving 

anonymous, consistent, and reliable LDPC error correction. 

 

Step 1: LDPC Encoder Design Using π Rotation 

 

The first step involves designing an LDPC encoder that 

incorporates a π rotation for improved error correction. In 
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this context, π rotation refers to a systematic method of 

permuting or rotating the bit sequence during the encoding 

process to enhance the sparsity and randomization of the 

code structure. This ensures that error patterns become 

less correlated, which improves the robustness of the error 

detection and correction process. 

 

The encoder works as follows: 

 

• The original message bits are first transformed into 

codewords using an LDPC matrix, which consists of 

sparse connections between data bits and parity-check 

equations. 

• A π rotation is applied to permute the bit sequence 

before generating the parity bits, introducing 

additional randomization and improving the code’s 

resistance to burst errors or correlated noise. 

• This design allows the encoder to create codewords 

with enhanced error-correction capabilities, even 

under challenging communication conditions. 

 

Step 2: Maximum a Posteriori (MAP) Estimation 

 

The MAP estimation step improves the decoding 

performance by computing the likelihood of different bit 

values based on the received signals. This probabilistic 

approach maximizes the posterior probability of 

each transmitted bit, given the noisy observations, by 

considering both prior information and the received data. 

 

In this method: 

 

• The MAP estimator calculates the probability of each 

bit being either 0 or 1, based on the observed signal 

and the parity-check equations. 

• By incorporating both prior probabilities and the noisy 

signal received at the decoder, MAP estimation refines 

the likelihood of each bit’s correctness. 

• This probabilistic estimation feeds into the IPA 

process, where iterative updates are made to the bit 

probabilities, enhancing the accuracy of the decoding 

under unfamiliar or noisy thresholds. 

 

Step 3: BCS Using Super-Resolution 

 

To further improve the performance of LDPC decoding, 

Belief-Propagation-Coding Scheme (BCS) is integrated 

with a Super-Resolution technique. This combination 

allows the system to refine the accuracy of its decisions 

by enhancing the resolution of the belief propagation 

process. 

 

In this step: 

 

• The BCS propagates “beliefs” or confidence levels 

about each bit’s value across the bipartite graph. These 

beliefs are iteratively updated based on the feedback 

from neighboring parity-check equations. 

• Super-resolution enhances this process by increasing 

the granularity of the belief propagation, allowing the 

system to make more fine-grained adjustments to bit 

confidence levels, even in the presence of noise or 

unfamiliar thresholds. 

• This enhanced resolution enables more precise 

decoding decisions, improving the system’s reliability 

in challenging communication environments. 

 

Step 4: LDPC IPA Decoding Algorithm 

 

The final step in the method is the implementation of an 

LDPC IPA decoding algorithm, which iteratively refines 

the likelihood estimates of each bit using the probabilities 

and beliefs computed in the previous steps. 

 

The IPA decoding algorithm works as follows: 

 

• The initial probabilities for each bit are determined 

based on the received signal and parity-check 

equations. This is the starting point for the decoding 

process. 

• The algorithm iterates through multiple rounds of 

updates, where each bit’s probability is adjusted based 

on feedback from neighboring bits and parity-check 

nodes, using the information generated by the MAP 

estimator and the BCS with super-resolution. 

• With each iteration, the system progressively refines 

its estimate of the correct bit values, allowing for the 

correction of errors, even in the presence of noisy or 

unknown thresholds. 

• The process continues until the algorithm converges 

on a stable set of bit values or until a predefined 

maximum number of iterations is reached. 

 

2.1 ANONYMOUS CONSISTENT RELIABLE 

LDPC WITH UNFAMILIAR THRESHOLD 

 

The integration of these components—π rotation, 

MAP estimation, BCS with super-resolution, and IPA 

decoding—yields an anonymous, consistent, and reliable 

LDPC system. This system adapts to unpredictable 

thresholds or fluctuating noise levels, ensuring effective 

error correction without requiring prior knowledge 

of specific signal parameters. The system operates 

independently of predefined thresholds, making it suitable 

for environments where signal quality and noise levels are 

unknown or variable. The iterative nature of the IPA and 

BCS ensures that the decoding process remains stable and 

reliable, regardless of the level of noise or interference in 

the communication channel. The combination of MAP 

estimation, belief propagation, and super-resolution results 

in a highly reliable error correction system, capable of 

correcting errors even in challenging conditions. 
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i i jN (i )  

The Low-Density Parity-Check (LDPC) encoder 

constructs a sparse parity-check matrix H, where each row 

corresponds to a parity-check equation, and each column 

corresponds to a transmitted bit. The encoding ensures that 

the product of the parity-check matrix H and the codeword 

vector c (composed of message and parity bits) is zero 

defined in equation (1) 

 

H.cT = 0 (1) 

applied to the LDPC code, where messages (or beliefs) 

are passed between variable nodes (bits) and check nodes 

(parity equations). For each iteration, a variable node yi 

sends a message to its connected check nodes ci, indicating 

the probability that vi = 0 or vi = 1 Super-resolution refers 

to improving the granularity and precision of the message 

updates during belief propagation. At each iteration, the 

probability or “belief” for each variable node is updated 

based on the incoming messages from connected check 

nodes: computed as in equation (7) 
 

where c = [m, p], consisting of message bits m and parity 

bits p. To enhance the robustness of the LDPC encoder, 

we introduce a π\piπ rotation (or permutation) into the 

p(vi = 1) =  jN (i ) p(Cj = 1 | vi ) (7) 

encoding process. Let Pπ be a permutation matrix that 

applies a π\piπ-rotation on the sequence of bits. The 

encoding equation with π rotation stated in equation (2) 

 

H.Pπ.c
T = 0 (2) 

 
This rotation reduces the correlation of errors and 

introduces randomness into the codeword structure, 

where N(i) denotes the set of check nodes connected to 

variable node vi, and P(Cj =1│vi) represents the likelihood 

that the parity check Cj is satisfied given that vi = 1. The 

updated belief for vi is computed using a super-resolution 

approach that enhances the precision of these updates by 
introducing additional iterative steps, ensuring that the 

convergence to the correct bit values is more accurate 
computation in equation (8) 

making the LDPC code more resilient to burst errors or 

correlated noise. MAP estimation computes the likelihood 

of a bit being 0 or 1, given the received noisy observation 

p(vi = 1) = 
1 

 
 

1+ exp(−i ) 
(8) 

y. The goal is to find the bit sequence c that maximizes the 

posterior probability P(c | y) defined in equation (3) 

where βi is the cumulative message received from 

neighboring check nodes, which is iteratively refined 

using high-precision updates. The Iterative Probabilistic 

ĉ = arg maxc P(c|y) (3) 
Algorithm (IPA) is an iterative decoding process where 

probabilities for each bit are updated based on the 

likelihood information and feedback from parity-check 

Using Bayes’ theorem as in equation (4) 

 

p(c | y) = 
 p( y | c)P(c) 

P( y) 

 

 

(4) 

nodes. It refines the estimates of the transmitted bits 
through iterations. Let the likelihood ratio for each bit vi at 

iteration t be given in equation (9) 

  P(v = 1 | y)  

where P(c | y) is the likelihood of receiving y given c, p(c) 

is the prior probability of the codeword, and p(y) is the 

L(v(t) ) = log  
 

i 
 

P(vi = 0 | y)  
(9) 

marginal probability of y. Since p(y) is independent of c, 

simplified as in equation (5) 

 

ĉ = arg maxc P(c | y)P(c) (5) 

 
For binary LDPC codes, where bits are independently 

transmitted over a channel with additive Gaussian noise, 

the likelihood P(y | c) follows a Gaussian distribution 

stated in equation (6) 

  ( yi − ci )2  

Initially, this ratio is based on the received signal y and 

is updated iteratively by combining messages from 

neighboring parity-check nodes stated in equation (10) 

L(v(t+1) ) = L(v(t) ) +  M (Cj → vi ) (10) 

where M(cj → vi) is the message passed from check node 

cj to variable node vi, indicating the likelihood that the 

parity check cj is satisfied given the current estimate for 
vi. The IPA continues updating the likelihood ratios until 

p( y | c) = i exp  − 
 2 2 

 (6) 
the system converges, meaning the bit estimates no longer 

change significantly between iterations. The decision for 

each bit is then made based on the final likelihood ratio 

where σ2 is the noise variance. MAP estimation refines the estimated as in equation (11) 

initial likelihoods and provides more accurate bit estimates, 

which are passed on to the IPA for further refinement. 

Belief Propagation (BP) is an iterative decoding method 

1 
vi =  

0 

if L (v(t) )  0 

if L (v(t) )  0 

 

(11) 



TECHNOLOGIES AND THEIR EFFECTS ON REAL-TIME SOCIAL DEVELOPMENT, VOL 167, PART A2 (S), 2025 

5 

 

 

 

  

The anonymous, consistent, and reliable nature of this 

method is due to its ability to adapt to environments 

with unfamiliar thresholds, such as unknown signal- 

to-noise ratios or dynamically changing noise levels. 

The combination of MAP estimation, BCS with super- 

resolution, and IPA decoding ensures that the LDPC 

system can operate effectively without prior knowledge of 

these thresholds, providing robust error correction even in 

unpredictable conditions. The method dynamically adjusts 

the decoding process based on real-time information 

about the communication channel, making it well- 

suited for applications in wireless networks, satellite 

communications, and IoT systems where noise levels are 

unpredictable or vary over time. 

 

2.2 LDPC ENCODER FOR BI-SENSING WITH 

PARITY CHECK PI ENCODER 

A Low-Density Parity-Check (LDPC) encoder is a crucial 

component in modern communication systems, designed 

to enhance error correction capabilities while maintaining 

efficient data transmission. The LDPC encoder employs a 

sparse bipartite graph representation, where the connectivity 

between variable nodes (representing data bits) and check 

nodes (representing parity checks) is characterized by a low 

2, Hd represent various segments of the matrix related to 

the data bits. The subscript d indicates that these are data- 

related matrices, while the subscripts q3,2,1 could signify 

different configurations, channels, or versions of the data 

parity-check components. Hp component represents the 

parity-check portion of the matrix, which is responsible 

for enforcing the parity constraints on the codewords. The 

Concatenationnotation [Hd, q|···|Hd, 3|Hd, 2|Hd, 1|Hp] 

indicates that the matrix is constructed by horizontally 

concatenating the data-related submatrices along with 

the parity-check matrix. This concatenation signifies that 

all these components work together to form the complete 

parity-check matrix. 

 

Equivalence computed with H = [Hd | Hp] indicates that the 

overall matrix H can also be expressed as the combination 

of a more compact representation of the data components 

Hd and the parity-check matrix Hp. This notation 

emphasizes that the detailed submatrices of data can be 

summarized into a broader matrix form, highlighting their 

interrelationships in the context of encoding and decoding 

operations stated in equation (13) 

1 0 0 0 ... 0 0  1 1 0 0 ... 0 0  

  
density of connections. This sparse nature allows for the 0 1 1 0 0 ... 0 

creation of long codewords, which significantly improves 

the performance of error correction without imposing 

excessive  computational  complexity.  The  encoding 

 

Hp =  

 

 
..........  

. ...............  
 

 

(13) 

process involves systematic encoding techniques, where 

information bits are combined with parity bits to generate 

a codeword that meets specified constraints defined by the 

parity-check matrix. The flexibility of the LDPC encoder 

enables it to be adapted for various applications, including 

satellite communications, wireless networks, and data 

storage systems, making it a versatile choice for achieving 

high reliability and performance in data transmission. 

Furthermore, recent advancements, such as the integration 

of Pi rotation techniques and optimization constraints, 

have enhanced the efficiency and effectiveness of LDPC 

encoders, enabling them to address large-scale problems 

while reducing the error floor and improving overall 

coding performance estimated as in equation (12) 

0 ... 0 1 1 0 0 
0 0 ... 0 1 1 0 

0 0 0 ... 0 1 1 

 
H = [Hd , q | ... | Hd , 3 | Hd , 2 | Hd ,1 | Hp] → for R = 1 / 2 

H = [Hd , q | ... | Hd , 3 | Hd , 2 | Hd ,1 | Hp] → for R = 2 / 3 

H = [Hd , q | ... | Hd , 3 | Hd , 2 | Hd ,1 | Hp] → for R = 3 / 4 

H = [Hd , q | ... | Hd , 3 | Hd , 2 | Hd ,1 | Hp] → for R = q / (q +1) 
 

H = [Hd , q | ... | Hd , 3 | Hd , 2 | Hd ,1 | Hp] = [Hd | Hp] (12) 
 

This matrix Hp 

 

contains a pattern that reflects how the 

All of the component sub-matrices, Hp, Hd, 1, Hd, 2, …, 

Hd, q are square matrices of the size MxM. Code rate of the 

base parity check matrix is given by R = q/(q+1). Combined 

Hd, i, (i = 1, 2, …, q) matrices form an MxK matrix, Hd, 

which corresponds to the “data” bits of the codeword. With 

Hp is an M×M “dual diagonal” matrix, which corresponds 

to the “parity” bits of the codeword. Matrix Structure H 

signifies the overall parity-check matrix that is utilized 

for error detection and correction in coded systems. The 

matrix is structured in a concatenated format, denoting that 

it consists of different segments. With Hd, q, Hd, 3, Hd, 

parity checks relate to the data bits in the LDPC code 

with Ones and Zeros. Each row of the matrix consists of 

zeros and ones, where the ones represent connections 

between data bits and check nodes. The positioning of the 

ones suggests how different data bits contribute to various 

parity checks. For example, the first row indicates that the 

first data bit is involved in its own parity check, while the 

second row shows that the first and second data bits are 

both part of the corresponding parity check. Overlapping 

Connectionsstructure suggests overlapping connections 

where multiple data bits are combined for the same parity 

check, highlighting the LDPC’s sparse nature and its ability 
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q 

to efficiently correct errors without heavy computational 
load. The code rate R is defined as the ratio of the number of 

 

 A,i B,i C ,i D,i  
     

information bits to the total number of bits in the codeword. H =  B,i C ,i D,i A,i  , i = 1, 2,..., q 
d ,i  

C i      

For instance, R = 12 indicates that for every two bits 

transmitted, one is an information bit and one is a parity bit. 

Similarly, for R = 23 and R = 34, the respective proportions 

of information to total bits change accordingly. Scaling 

 
, D,i A,i B,i 

 
 D,i  A,i B,i C ,i  

 

(14) 

of Parity-Check Matrix as the code rate increases (i.e., 

more information bits relative to parity bits), the structure 

of Hp changes accordingly to maintain the efficiency of 

the code while ensuring that the necessary parity checks 

can still be performed. The relationship  R = 
1 

implies a 

flexible structure where qqq determines the complexity and 

performance of the LDPC code stated in equation (14) 

The above matrix structured to represent a collection of 

data-related components in a Low-Density Parity-Check 

(LDPC) code, where each entry π(X, i) (for Xϵ{A, B, C, 

D} denotes a specific parameter or function associated 

with the data elements at a given iteration i. Matrix 

Structure each row of the matrix represents a permutation 

of the parameters π(A, i), π(B, i), π(C, i), and π(D, i). The 

arrangement signifies how the different parameters interact 

 

Algorithm 1. π – Encoder with the LDPC for the sensing 

// Parameters 

Define q // Number of iterations 

Define n // Number of encoded bits 

Define k // Number of original bits 

Define R // Code rate (R = k/n) 

 

// Define the parity-check matrix H 

Function CreateParityCheckMatrix(q): 

H = [] // Initialize H matrix 

for I from 1 to q do 

row = [] // Create new row 

for each parameter X in {A, B, C, D} do 

row.append(π(X, i)) // Append parameter π for each X 

end for 

H.append(row) // Add row to H 

end for 

return H 

end Function 

 

// LDPC Encoding Process 

Function LDPCEncoder(message): 

H = CreateParityCheckMatrix(q) // Generate parity-check matrix 

x = [] // Initialize codeword 

for j from 1 to n do 

x[j] = message[j] // Start with the input message 

end for 

 

// Generate parity bits 

for I from 1 to number of parity bits do 

parity_bit = 0 

for each j where H[i][j] == 1 do 

parity_bit = parity_bit XOR x[j] // Compute parity using XOR 

end for 

x[n + i] = parity_bit // Append parity bit to codeword 

end for 

 

return x // Return the encoded codeword 

end Function 
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=  

 
 

// LDPC Decoding Process using Iterative Message Passing 

Function LDPCDecoder(codeword): 

L = InitializeLattice(codeword) // Initialize messages 

for iteration from 1 to max_iterations do 

// Update messages in the factor graph 

for each variable node v do 

for each check node c connected to v do 

L[c][v] = UpdateMessage(v, c, L) // Update message from variable to check node 

end for 

end for 

 

// Update messages from check nodes to variable nodes 

for each check node c do 

for each variable node v connected to c do 

L[v][c] = UpdateMessage(c, v, L) // Update message from check to variable node 

end for 

end for 

 

// Check for convergence 

if CheckForConvergence(L) then 

break // Stop if converged 

end if 

end for 

 

return DecodeFinalMessage(L) // Decode and return the final message 

end Function 

 

// Main 

Define message // Input message to encode 

codeword = LDPCEncoder(message) // Encode the message 

decoded_message = LDPCDecoder(codeword) // Decode the codeword 
 

 

with each other across various iterations i, allowing for 

cyclic permutations that may enhance the performance of 

0  0  0  0  1  0 0  0  0  0  0  1 0  0  0  1  0  0 0  1  0  0  0  0 

    
the LDPC code by exploiting redundancy and relationships 
among the parameters. Cyclic Permutation of rows of 

 

 
A,i  

1  0  0  0  0  0 
  0  0  1  0  0  0 

 

 
D,i  

0  0  1  0  0  0 
  1  0  0  0  0  0 

H (d, i) display a cyclic pattern, meaning that the position     

of each parameter shifts in each subsequent row. This 0  1  0  0  0  0 0  0  0  0  0  1 
    

cyclical behavior may be used to distribute the influence 

of each parameter across different checks or calculations, 

promoting uniformity and balance in the data relationships. 

The index i represents the iteration count or the specific 

instance at which the matrix is evaluated. The notation i = 

1, 2, …, q suggests that multiple matrices can be generated 

depending on the value of i, where q indicates the total 

number of such iterations or distinct configurations. This 

flexibility enables the LDPC coding scheme to adaptively 

respond to variations in the data stream or channel 

conditions. LPDC coe inclusion of these permutations in 

the LDPC framework can potentially lead to improved 

error correction capabilities, as different arrangements of 

parameters might enhance the ability to detect and correct 

errors in transmitted data. The matrix structure facilitates 

an organized approach to how the encoding and decoding 

processes are executed, ensuring that relationships among 

different data bits are effectively captured stated in 

equation (15) 

0  0  0  1  0  0 0  0  0  0  1  0 

 

 

 

 
    

B,i 
0    

 

 

 

 

 

3. PARITY CHECK MATRIX WITH Π 

ROTATION ENCODING BCS 

 

The performance evaluation of a parity-check matrix is 

crucial in assessing the effectiveness of Low-Density 

= 

 0 1 0 0 0 0 0 0 1 0 0 0  
1 0 0 0 0 0 0 0 0 0 1 0 

 = 
0 

 

0 

0 

0 

0 

0 

1 

0 

0 

1 
 = 

0 
 C ,i  

0 0 

0 

0 

0 

0 

1 

0 

0 

0 

0 
 

1 
(15) 

 0 
 

0 0 0 1 0 1 
  

0 0 0 0 0  

 0 0 1 0 0 0 0 1 0 0 0 0  
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k =− 

k =1 

k =1 

m 

m 

m 

 

 
Figure 1. Parity check matrix for rate 7/8 

 

Table 1. Code rate of the encoder 
 

Code rate Expansion 

factor (L) 

Number of 

codewords 

Effective 

code rate 

R = 1/2 = 0.5 L = 4 6 Reff = 0.501 

R = 2/3 = 0.667 L = 4 3 Reff = 0.667 

R = 3/4 = 0.75 L = 4 2 Reff = 0.751 

R = 7/8 = 0.875 L = 2 2                          Ref f = 0.858 

 

 

Parity-Check (LDPC) codes in error correction during data 

transmission. This evaluation focuses on several key factors, 

including the error correction capability, code rate, and 

matrix sparsity. The error correction capability is primarily 

measured by the Bit Error Rate (BER), which quantifies 

the fraction of incorrectly received bits in a communication 

channel. A well-designed parity-check matrix with low 

density enables efficient error correction while minimizing 

redundancy, thereby enhancing the overall performance of 

starting with R = 1/2 (0.5), which utilizes an expansion 

factor L = 4 and results in 6 codewords, achieving an 

effective code rate Reff of 0.501. Similarly, for R = 2/3 

(0.667) with the same expansion factor, 3 codewords are 

generated, yielding an effective code rate of 0.667. For 

R = 3/4 (0.75) the matrix maintains an expansion factor 

of 4 but reduces the number of codewords to 2, resulting 

in an effective code rate of 0.751. Finally, the code rate of 

R = 7/8 (0.875) employs a lower expansion factor of 2 and 

also produces 2 codewords, achieving an effective code rate 

of 0.858. This data emphasizes how different configurations 

of the parity-check matrix can influence the efficiency 

and performance of LDPC codes in error correction 

applications. Figure 2, referenced as the representation of 

an Output Feedback (OFB), complements this discussion 

by illustrating an alternative coding structure that may 

interact with the parity-check matrix in practical coding 

scenarios computed as in equation (16) 

the code. Additionally, the code rate, defined as the ratio of 

information bits to total encoded bits, plays a significant 

role in determining the trade-off between redundancy and 

S (n) =  
+ 

hm (k )x(n − k ) (16) 

bandwidth efficiency. Performance is further assessed 

through simulations that generate results for various 

configurations of the matrix, allowing for the analysis of 

BER versus Signal-to-Noise Ratio (SNR) graphs. Table 1 

When the analysis filters have finite impulse responses 

(FIR) and are of maximal length L, becomes defined in 

equation (17) 

shows Code rate of the encoder. 

 

Figure 1 illustrates the parity-check matrix for a rate of 7/8, 

S (n) = 
L 

hm (k )x(n − k ) (17) 

highlighting the relationship between various code rates, 

expansion factors, the number of codewords, and effective 

code rates in the context of Low-Density Parity-Check 

After downsampling with a decimation factor N < M, one 

obtains the downsampled signals stated in equation (18) 

(LDPC) coding. The table presents four distinct code rates, y (i) = 
L hm (k )x(iN − k ) (18) 

 

 

 

 

Figure 2. Representation of an OFB 
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Qnm  

k =1 m 

i i i 

 

The equation 
L 

h (k )x(iN − k ) represents the output 

signal of a convolution operation where hm(k)h_m(k)hm 

(k) denotes the impulse response of the filter and x(n) is 

the input signal. This equation highlights the fundamental 

principle of linear time-invariant (LTI) systems, where the 

To incorporate super-resolution, the standard belief 

updates are refined by introducing additional iterations 

where the likelihood values are recalculated using higher- 

order approximations stated in equation (19) 

output is a weighted sum of past input values, determined 

by the filter’s impulse response. When the analysis filters 

are finite impulse response (FIR) filters with a maximum 

P (v(t+1) = 1) = P (v(t) = 1) +  .P (v(t) ) (19) 

length L, the equation simplifies to 
L  

h (k )x(iN − k ) , where P (v
(t ) ) is a higher-resolution refinement of the belief 

k =1 m 

indicating that the output is now only influenced by the 

last L samples of the input signal. This formulation makes 

the computational implementation of FIR filters more 

efficient by limiting the number of terms involved in the 

convolution process. Following the filtering operation, 

downsampling occurs with a decimation factor N < M, 

producing the downsampled signals represented by the 

equation  y (i) = 
L  

h (k )x(iN − k )  Here,  y (i)  indicates 

 
i 

at iteration t, and ϵ is a small update factor that ensures 

that the beliefs converge smoothly to the final values. The 

goal of super-resolution is to improve the precision of the 

belief estimates, especially in the later stages of decoding 

when the differences between bit probabilities are very 

small. This enables the decoder to resolve fine differences 

between very likely and less likely bit estimates, reducing 

the chance of error stated in equation (20) – equation (26) m k =1 m m 

the output after downsampling, where i is the new time 

index reflecting the reduced sampling rate. This process 

essentially retains every N-th sample of the filtered signal, 

significantly reducing the data size while maintaining 

the essential features of the signal. The application 

of downsampling in conjunction with FIR filtering is 

crucial in various signal processing tasks, as it optimizes 

computational efficiency and minimizes data redundancy 

while ensuring the fidelity of the signal representation. 

 

4.1 BCS USING SUPER-RESOLUTION: 

 

 

Qnm [i] = Lch (n) + mC (n)\ m 
R 

 

 

Appn[i −1] = Lch (n) + mC (n) 
Rmn[i −1] 

= Lch (n) + mC (n)\ m 
Rmn[i −1] + Rmn[i −1] 

= Qmn[i] + Rmn[i −1] 

 

nV (m) 
xn = 0 

 

(20) 

 

 

 

(21) 

 

 

 

(22) 

 

Belief-Propagation Coding Scheme (BCS) is an iterative 

decoding technique often used for LDPC codes. It operates 

by passing messages between variable nodes (bits) and 

check nodes (parity equations) within a factor graph. The 

xn =  

 
  

 

 

nV (m)\ n 

 

xn (23) 

purpose is to update beliefs or probabilities for each bit in Rmn i = L   xn  

the received message based on the relationships defined by  nV (m)\ n  

the parity-check matrix H. Super-resolution in the context 
of BCS refers to enhancing the precision and accuracy of 

=   
nV (m)\ n 

[+]Qnm i  

 
   

(24) 

these probability updates, allowing for finer distinctions =   sgn (Q  i) 2 tanh−1   tanh   
n m  n ( ) 

  ( )  2  

between probable and improbable bit values during the 

decoding process. In Belief Propagation (BP), the messages 

V  m \ n  n V  m \ n   

sent between the variable nodes and the check nodes are 

based on the likelihood that the transmitted bits satisfy the 

parity checks. The goal is to estimate the probability that 

Rmn[i] = nV (m)\ n sgn(Qnm[i])  min 
nV (m)\ n 

(| Qnm[i] |) (25) 

each bit in the transmitted codeword is either a 0 or 1 given 
the noisy received signal y. For a given variable node vi, 

connected to several check nodes Cj (via the parity-check 

Rm n [i] = sgn(Rmn[i])  max(| Rmn[i] | −Coffset , 0) (26) 

matrix H, the belief for vi being 1 is updated based on the 

incoming messages from its connected check nodes: 

 

The super-resolution technique enhances the precision 

of the messages passed between nodes by introducing 

higher-order updates in the iterative decoding process. 

The traditional belief-propagation algorithm uses 

simple message-passing to update each variable node’s 

belief. However, super-resolution refines this process by 

iteratively narrowing down the likelihoods, effectively 

increasing  the  “resolution”  of  the  belief  updates. 

The set of equations presented outlines a framework for 

the computation of message passing in a coding system, 

particularly within the context of iterative decoding 

algorithms for Low-Density Parity-Check (LDPC) codes. 

Starting with Equation (20), Qnm [i], the expression defines 

the message Qnm [i] as a combination of the channel log- 

likelihood Lch [n] and a sum of received messages R′n m [i] 

from neighboring variable nodes m′m’m′ that are connected 

to node nnn within the check node set C(n), excluding the 

message from node mmm. This approach encapsulates the 

iterative nature of the decoding process, as it propagates 

mn(1−1) 



TECHNOLOGIES AND THEIR EFFECTS ON REAL-TIME SOCIAL DEVELOPMENT, VOL 167, PART A2 (S), 2025 

10 

 

 

(  )  

 

 

Figure 3. (a) Variable Node Update for a degree-3 variable node and (b) Check Node Update for a degree-4 check node. 

 

 

information from variable nodes to check nodes and 

back. In Equation (22), the iterative process of updating 

the a priori probabilities is demonstrated. The expression 

APPn [i−1], indicates that the a posteriori probability 

APPn [i−1], at iteration i−1 is calculated similarly to Qnm 

[i], incorporating all messages received from connected 

check nodes. The breakdown highlights that the values 

are updated continuously as information flows through 

the network, with the previous iteration’s messages being 

factored into the current computation. Equation (23), 

nV m 
xn , asserts a balance condition that states the 

XOR sum of the messages at check node mmm should 

equate to zero, reinforcing the structure of LDPC codes 

where the parity checks must hold true. Following this, 

decoding performance. Finally, in Equation (27), R′n m [i] 

= sgn (Rn m [i]) × max(|Rn m [i]| − Coffset, 0), the value of the 

message is adjusted by a constant offset Coffset, 0, which 

serves to normalize the results and avoid negative values in 

the output messages. With structured approach of message 

passing, characterized by the interplay of equations and 

sign operations, is fundamental to the efficient decoding 

of LDPC codes, ultimately contributing to improved error 

correction capabilities in communication systems. 

 

4. RESULTS AND DISCUSSION 

 

In the proposed simulation, the Low-Density Parity-Check 

(LDPC) encoding and decoding process using Iterative 

Equation (24), nV (m)\ n 
x

n expresses the update for the Probabilistic Algorithm (IPA) and Block Compressed 

variable node n as the XOR of incoming messages from 

other neighboring variable nodes n', excluding n itself. 

The Equation (26), Rnm [i] the update for the message sent 

from check node mmm to variable node nnn at iteration 

iii is calculated by taking the product of the signs of the 

incoming messages and multiplying it by the minimum 

absolute value among those messages. This formulation 

not only captures the directionality of the messages but also 

prioritizes the weakest signal, essential for maintaining 

Sensing (BCS) with Super-Resolution was successfully 

implemented and verified through behavioral simulation 

in Vivado. The clock (clk) and mode (mode) signals 

maintained stable operations throughout the simulation, 

with no errors injected (err_inj = 0). The final output 

signal (final_op[11:0]) was consistently observed as “fad” 

at critical timestamps, such as 2800 ns and 3000 ns, while 

the decoded output signal (dec_op[23:0]) was “fad257” 

at the same points, indicating accurate data processing. 

The overall design contains 922 cells, 98 I/O ports, and 

 

Table 2. LDPC Coder 

Signal Time (ns) Value Interpretation 

clk 0−3,500 1 Clock signal toggling to drive operations 

mode 0−3,500 1 Operational mode 

err_inj 0−3,500 0 No error injected 

final_op[11:0] 2,800 fad Final output (hexadecimal) 

final_op[11:0] 3,000 fad Final output remains unchanged 

dec_op[23:0] 2,800 fad257 Decoded output (hexadecimal) 

dec_op[23:0] 3,000 fad257 Decoded output remains unchanged 

clk 3,500 1 Clock signal remains high 

num_cells – 922 Number of cells in the schematic 

num_IO_ports – 98 Number of I/O ports 

num_nets – 1647 Number of nets 
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Table 3. Time stamp estimation of π - Encoder 
 

Signal Name Timestamp (ns) Value 

clk 2800 1 

mode 2800 0 

err_inj 2800 0 

final_op[11:0] 2800 fad 

dec_op[23:0] 2800 fad257 

clk 3000 1 

mode 3000 0 

err_inj 3000 0 

final_op[11:0] 3000 fad 

dec_op[23:0] 3000 fad257 

clk 3500 1 

mode 3500 0 

err_inj 3500 0 

final_op[11:0] 3500 fad 

dec_op[23:0] 3500 fad257 

 

 

1647 nets, showing the structural complexity of the 

implementation. Table 2 shows LDPC Coder. 

 

The results from the simulation stated that the clk signal 

toggled consistently throughout the simulation, driving 

operations over the entire duration from 0 to 3,500 ns, with its 

value consistently high (1). The mode signal also remained 

steady at 1, indicating the system was in its operational 

mode during this time. The err_inj signal, responsible 

for error injection, stayed at 0, indicating no errors were 

injected during the simulation.At timestamps 2,800 ns and 

3,000 ns, the final_op[11:0] maintained a hexadecimal value 

of fad, representing the final output signal, which did not 

change over these timestamps. Similarly, the dec_op[23:0] 

signal held a value of fad257 at both 2,800 ns and 3,000 

ns, showing stability in the decoded output.At the 3,500 

ns mark, the clock signal (clk) remained high (1), ensuring 

continuous operation.Additionally, the schematic of the 

design consisted of 922 cells, 98 I/O ports, and 1,647 nets, 

representing the structural complexity of the design. These 

figures provide insight into the size and connectivity of the 

underlying hardware components. 

 

The simulation results at the specified timestamps reveal 

consistent operational behavior across multiple signals. 

At 2,800 ns, the clk signal is high (1), indicating that the 

clock is active and driving the system’s operations. The 

mode signal reads 0, suggesting that the system is in a non- 

operational or idle state. Importantly, the err_inj signal 

remains at 0, indicating that no errors are being injected 

into the system at this moment. The final_op[11:0] output is 

recorded as fad, which is a hexadecimal value representing 

the final computed output. Similarly, the decoded output, 

dec_op[23:0], shows the value fad257, confirming that the 

decoding process yields a stable result at this timestamp. 

This pattern continues at the subsequent timestamps 

of 3,000 ns and 3,500 ns, where the clock signal (clk) 

remains high (1), reinforcing that the system continues to 

operate normally. The mode and err_inj signals persist at 

0, maintaining the non-operational status and the absence 

of error injection, respectively. The outputs (final_op[11:0] 

and dec_op[23:0]) remain unchanged, consistently 

reflecting fad and fad257 at both timestamps. Table 3 

shows Time stamp estimation of π - Encoder. 

 

The simulation results displayed in the provided image 

show the output of a behavioral simulation using the 

Vivado tool. The figure demonstrates various signals 

and their corresponding values over time, with a time 

range of 4800 nanoseconds (ns). Key signals such as clk 

(clock), mode, and final_op[11:0] are observed, along 

with the values transitioning at different points in time. 

The clock signal (clk) is shown to toggle between 1 and 

0, maintaining a steady square wave pattern that drives 

the timing of the system. The mode signal is set to 1, 

which could indicate a specific operational mode of the 

 

 

 

Figure 4. Proposed top simulation results with out error 
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simulation.The final_op[11:0] signal shows hexadecimal 

values like “aaa” and “bda000dd” transitioning at certain 

points, indicating changes in the encoded or decoded 

outputs.Other signals such as op_en[2:3] and gp_en[2:3] 

also show changes, reflecting different operational stages 

within the simulation. 

 

The simulation runs without any errors, as reflected in 

the smooth transitions and consistent signal changes. 

For example, at 800 ns, the signal value for op_en[1:0] 

shows a transition, which corresponds with the system’s 

expected behavior based on the design parameters.Signal 

rx_bs1 and rx_bs2 values stabilize around -1.5863, which 

could be relevant to the decoding process in the context 

of error correction.At 600 ns, the value for final_op[11:0] 

shows “bda”, indicating the final operation output during 

the simulation. 

 

The simulation results from the Vivado tool illustrate the 

behavior of a Low-Density Parity-Check (LDPC) encoder- 

decoder system. The clock signal (clk) toggles consistently, 

driving the system’s operation. The mode signal, which 

 

 

 

Figure 5. Proposed top simulation results with error 

 

 

Figure 6. Top RTL schematic 

 

 

Table 4. Comparison table 

 Existing Ref [12] Existing Ref [13] Proposed Method 

Latency (ns) 843.84 1388.76 542.64 

Dynamic Power (nw) 140.42 502 89.3 

Static Power (nw) 18.4 23.6 1.45 

LUTs 1054 1876 876 
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is set to 1, indicates that the system is functioning in a 

designated operational mode, while the error injection 

signal (err_inj) remains at 0, confirming that no intentional 

errors are introduced during this simulation. 

 

The signals, such as final_op[11:0] and dec_op[23:0], 

display hexadecimal values like “fad” and “fad257”, 

representing the processed output data. At specific 

timestamps, such as 2,800 ns, final_op[11:0] outputs 

“fad”, and dec_op[23:0] shows “fad257”, demonstrating 

successful data decoding without errors. By 3,400 ns, 

the values stabilize, further indicating proper and error- 

free data transmission and decoding. Additionally, the 

second image provides a detailed schematic of the system, 

which includes 922 cells, 98 I/O ports, and 1647 nets. 

This schematic represents the complex interconnections 

within the design, confirming the successful operation of 

the encoder-decoder system. The overall simulation results 

show that the LDPC system functions reliably, with the 

numerical outputs confirming accurate data processing and 

decoding, free of errors. 

5. CONCLUSION 
 

The implementation of the Pi rotation-based encoder 

design with optimized constraints in the Low-Density 

Parity-Check (LDPC) process has yielded promising 

results. The challenges posed by the intractable 

complexity of the optimal Maximum A Posteriori (MAP) 

estimator were addressed through two suboptimal 

solutions, with one being iterative, effectively managing 

large-scale problems. Utilizing interval analysis 

techniques enabled the swift elimination of inconsistent 

solutions relative to the signal model and quantization 

noise, enhancing overall efficiency. The proposed 

BCS-UT algorithm demonstrated superior performance 

compared to previous methods, even in the absence 

of known thresholds. Moreover, adaptations to the 

framework allowed for effective handling of noisy 

binary measurements by incorporating slack variables, 

thereby relaxing measurement consistency conditions. 

The modifications to the tanh and tanh21 functions of the 

Sum-Product Algorithm (SPA) were crucial in improving 

the performance of LDPC codes and significantly 

reducing the error floor when compared to the standard 

SPA. Additionally, the use of a quantization table with 

eight values and a piecewise linear function with seven 

regions further refined the approximations of these 

functions, contributing to the robustness and reliability 

of the design. 
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