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Abstract 

Mental task detection and classification employing solo/restricted channel(s) 

electroencephalogram (EEG) signals in actual time perform a significant part in the pattern of 

mobile brain-computer interface (BCI) and neurofeedback (NFB) schemes. Nevertheless, the 

actual time registered EEG signals remain frequently adulterated with noises like ocular 

artifacts (OAs) and muscle artifacts (MAs) that decline the handmade features extracted out 

of EEG signal leading to insufficient detection and classification of mental tasks. Hence, we 

analyse the employment of the latest deep learning approaches that in no way need 

whatsoever physical feature extraction or artifact repression phase. This study proffers a one-

dimensional convolutional neural network (1D-CNN) framework for mental job detection 

and classification. The proffered framework’s strength can be analysed employing artifact-

free and artifact-adulterated EEG signals obtained out of publicly accessible datasets 

especially the Emotiv EPOC headset. It is observed that the proffered 1D-CNN attains 0.992 

of accuracy, 0.993 of precision, 0.9905 of recall, 0.0065 of FPR, and 0.992 of F-measure. 

Correlative execution assessment exhibit that the proffered framework surpasses prevailing 

techniques not merely concerning classification precision yet as well as in strength opposing 

artifacts.  

Keywords - Pre-processing, artifacts, EEG, CNN, feature extraction, classification, brain, 

electrodes. 

1.Introduction 

 EEG uses electrodes, which are usually placed on the scalp, to record the electrical 

activity of the cerebral cortex. This method is extensively used to diagnose sleep problems 

and epilepsy in medical settings [1]. In the real-time BCI applications, medical practitioners 

and EEG gains attracting performance for analysis [2]. In actual circumstances, however, 



EEG signal are subjected to different distortion in terms of biological and environmental 

abnormalities [3]. Unwanted signals [4], which comprises of the non-cerebral EEG electrodes 

and recorded [5] are referred to as artefacts. Environmental artefacts [6] and biological 

artefacts [7] are the two types of artefacts. Environmental artefacts are signals that originate 

from outside the human interference due to movement of electrodes occurs from the external 

devices such as poer line or electric motors [8], whereas the signal with the biological 

artifacts arises due to non-cerebral sources in the human body for the ocular and cardiac 

activity. Consequently, EEG signal with the BCI application degrades the artefacts in terms 

of biological and environmental factors [9].  

Machine learning and pattern identification techniques applied in the EEG data. In neural 

classification, classical supervised learning methods such as linear discriminant analysis 

(LDA) [10], decision tree and Support vector machine (SVM) which uses the canonical 

correlation analysis (CCA) for the elimination of artifacts. The feature dimensionality is 

minimized with the ICA, LFDA and PCA.  

In neural classification applications, neural networks were not as popular as they are now 

because of practical difficulties such as excessive computation times and issues with 

vanishing/exploding gradients [11]. Researchers studying neural networks may now examine 

deep learning designs (neural network topologies with at least two hidden layers) because of 

recent advances in graphics processing units (GPUs), which are both affordable and powerful 

[12]. Because of these developments, deep learning has been more popular and useful over 

the last decade[13]. A range of previously challenging domains, including photographs, 

videos, audio, and text were improved as a result of this technology. As a result, neural 

networks are assumed to need less prior knowledge of the dataset in order to function well 

[14-15]. 

Medical imaging, which often comprises of the larger dataset for examination and 

analysis for the effective performance analysis. Deep learning model utilized in the EEG 

signal for the utilized decoding and classification, those are associated with the low signal to 

noise ratios (SNRs) and higher data dimensionality for the increased availability with the 

massive EEG datasets [16]. Complex architecture and input signals such as time-frequency 

components in 2D or 3D form in the single or multi-channel EEG with the CNN-based 

workload classification model [17-18]. A 1D-CNN architecture is presented in this research 

to detect and categorise mental processes from single EEG channels. The contribution of this 

wok are as follows, 



• To remove the noise and artifacts using Morelette wavelet based pre-processing 

method and extract the relevant feature in the EEG signal in raw format using CNN 

model.  

• To design low complex subject-independent architecture based on 1D-CNN and 

compare it with the traditional method by using Emotiv EPOC headset dataset. 

The rest of this chapter is ordered as follows - Section 2 mentions a few existing research 

works, Section 3 shows the proposed approach and methodologies, Section 4 exhibits the 

experimental outcomes and discussion, and, finally, Section 5 ends up with conclusion and 

future work. 

2.Literature works 
In [19] developed a model to evaluate the physical or signal interference in the EEG 

artifacts. The developed model integrates the decomposition model with the Regenerative 

Multi-Dimensional Singular Value Decomposition (RMD-SVD). The proposed model uses 

the multivariate data Independent Component Analysis (ICA) data from the acquired signal. 

With the application of the regenerative reference input signal is constructed and evaluated 

with singular value decomposition. The performance analysis expressed that the proposed 

model exhibits improved performance in terms of SNR, PSNR, MSE, and so on. 

Additionally, the proposed model exhibits higher elimination efficiency with consideration of 

the different filters. In [20] presented a model to evaluate the EEG epoch probability based on 

consideration of the statistical features such as entropy, kurtosis, skewness, and index of a 

periodic waveform. The developed model to computes the features of the EEG artifacts based 

on the computation of the threshold values. The proposed model exhibits efficient 

performance in the removal of artifacts through automated methods. The developed model is 

efficient and suitable for real-time applications.  

In [21] constructed a supervised artifact elimination method in EEG based on 

consideration of chunks with the utilization of the independent component analysis. To 

eliminate the ocular artifacts discrete wavelet transform is applied for the 29 subjects based 

on the consideration of gestures such as walking and facial expression in the video. The EEG 

features are extracted based on the consideration of the 13 morphological features for the 

classification of the eye chunks’ movements. The movements of the eye in the EEG signal 

are processed with the elimination of the morphological distortion in the signals. The 

developed method exhibits significant performance in terms of mutual information, kurtosis, 

correlation, phase difference, and computational time. The developed model exhibits 



improved sensitivity and specificity for robustness. In [22] proposed an intelligent hybrid 

model for the removal of artifacts in the EEG signal. The proposed model uses the training 

and testing evaluation with the One-Dimensional Convolutional Neural Network (1D-CNN) 

integrated with the Spider monkey-based Electric Fish Optimization model (SM-EFO). The 

proposed SM-EFO uses the 1D-CNN for parameter tuning. The experimental analysis is 

performed with the conventional benchmark datasets to improve the performance. The 

proposed SM-EFO model exhibits improved performance than the conventional techniques. 

In [23] presented an efficient modular generative adversarial network (GAN) to improve 

network performance with an appropriate training strategy for the EEG artifacts removal. The 

proposed model exhibits the representation ability in the model with a reliable BCG generator 

for artifact removal. The proposed GAN model eliminates the requirement of hardware and 

additional reference signal requirement. The comparative analysis stated that the proposed 

GAN model significantly eliminates the BCG artifacts to retain EEG information. In [24] 

developed a computational intelligence model for identification and differentiation artifacts in 

the EEG signal. The proposed computational intelligence model uses the Residual Deep 

Neural Network model in EEG signals with data collected from 79 infants. With prediction 

and statistical analysis of the validated features, the dataset is processed with the average 

probability with the temporal window features. The developed residual deep neural network 

exhibits the accuracy of 95% with computation of the median accuracy. The validation and 

misclassification accuracy is estimated between the range 1% - 11% with the validation set of 

87%.  

In [25] developed a model for EEG artifacts integrated with canonical correlation analysis 

(OCA) integrated with noise adjusted principal component transform (NAPCT) for the 

elimination of the artifacts observed through eye blinks. The estimated features provide the 

average signal-to-noise ratio of 3.616 with the root means square error value of 42.456 for the 

EEG artifacts data. The estimated correlation coefficient is computed as 0.8839 with the 

mutual information value of 1.1546. The proposed approach effectively exhibits the EEG 

artifacts for the manual intervention for elimination of the EEG artifacts. In [26] presented a 

one-dimensional residual convolutional neural network (1D – ResCNN) for denoising EEG 

signals. The developed 1D – ResCNN model is involved in the estimation of the noisy and 

clean EEG signal. The developed 1D – ResCNN with the elimination of the automated noise 

removal in the contaminated EEG signal. The evaluation of the EEG model is based on the 

consideration of the CHB – MIT database. The results expressed that the proposed 1D – 



ResCNN model exhibits improved performance for the RMSE and SNR values. In [27] 

constructed a signal decomposition model for the EEG artifacts. The developed model 

exhibits the estimation of the variational model decomposition (mVMD) model with the 

limited intrinsic model function in the estimation of the EEG signal. The EEG signal is 

involved in exploitation of the EEG artifacts for the identification of the components with 

estimated QRS reference estimation in the signal. The developed mVMD model exhibits an 

average correlation value of 97%.  

Conventional machine learning and subject-dependent handmade features are the most 

common methods for identifying and classifying mental tasks. Due to considerable structural 

and functional variability across participants and EEG non-stationarity, these approaches may 

not be generalizable across persons and datasets. A strategy that uses deep learning to learn 

features from raw data during training may be able to solve this problem. In table 1 presented 

the summary of the literature in EEG artifacts. 

Table 1: Summary of Literature 

Reference Aim Outcome Limitation 

[19] developed model to evaluate 
the physical or signal 
interference in the EEG 

Increased SNR, PSNR, 
MSE 

Classification is 
not performed 

[20] Estimates the EEG artifacts 
through probability threshold 

The proposed model 
exhibits superior 
performance for real-time 
applications 

Complexity is 
higher 

[21] Developed a supervised 
artifact removal 

Improved sensitivity and 
specificity 

Accuracy is not 
adequate 

[22] Proposed a SM-EFO model  Increases the overall 
performance 

Suitable for 
benchmark 
dataset alone 

[23] Developed a GAN model  Eliminates the hardware 
requirement 

Classification is 
not adequate  

[24]  Constructed computation 
intelligence residual neural 
network 

Accuracy is estimated as 
95% 

The estimated 
error is minimal 

[25] Presented a canonical provides an average signal Classification 



correlation analysis (CCA) 
and noise adjusted principal 
component transform 
(NAPCT)  

to noise ratio and root 
mean square error values of 
3.616 & 42.456  

value is not 
defined 

[26]  Constructed a 1D – ResCNN 
model  

Improved SNR and RMSE 
value 

Classification is 
not performed 

 

 
3.Methodology 

 The below figure 1 exhibits the proffered EEG signal classification scheme’s overall 

methodology flow with efficient pre-processing and feature extraction method. 

 

Figure 1. System model for EEG signal classification 

Initially, the input database is trained, and during this procedure, the signals are pre-processed 

employing Morelette wavelet methodology. During pre-processing, the signal is rebuilt, and 

the noise is eliminated at first; next, the signal is cleared. Such noise elimination signal is 

provided to feature extraction unit by building CNN framework while convolution layer and 

scaling layer are present. Then, we train the 1D-CNN framework employing the training 

database of the classification plan. Subsequent to every epoch, the training precision and 

deprivation are noticed in the proffered scheme. The execution is evaluated with a few 

evaluation metrics like accuracy, precision, recall, FR, and F1-score of the proffered scheme.  



3.1 Dataset description 

The database employed for the experiential assessment is excerpted out of the 

University of California-Irvine (UCI), a machine-learning repository. The database comprises 

15,181 examples of fifteen features. The positioning of the electrode chiefly comprises 5 

regions like central (C), frontal (F), occipital (O), parietal (P), and temporal (T). The entire 

cranium is partitioned as 2 areas – left and right. The former portion comprises the O1, P7, 

T7, FC5, F3, F7, and AF3 electrodes. Simultaneously, the latter portion comprises O2, P8, 

T8, F8, FC6, F4, and AF4 electrodes. The vision of fourteen channels (that is, AF3, F7, F3, 

FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4) and class-based (that is, open and close) 

EEG signal data for eye situation is performed.  

3.2 Pre-processing employing Morelette wavelet methodology 

The effectual artifacts elimination out of the EEG signal is needed to be applied by 

excerpting the majority of the important non-linear attributes despite the intricate and 

duration-variable signals. Hence, such difficulties should be resolved by embracing a novel 

EEG artifacts elimination methodology by Morelette wavelet methodology. The Time-

frequency domain is portrayed as a wavelet transform. A signal’s Morelette Wavelet 

Transformation is provided by, 

CWT(a,b) = 1
√|𝑎𝑎|∫ 𝒳𝒳(𝑡𝑡)𝜓𝜓+∞

−∞
  *�𝑡𝑡−𝑏𝑏

𝑎𝑎
� dt         (1) 

As per Parseval’s theorem, signals remain split up in different levels. This is given by, 

CDi = ∑ |𝐷𝐷𝑖𝑖𝑖𝑖|𝑁𝑁
𝑗𝑗=1

2 ,i = 1,…….,l                   (2)        

CAl = ∑ |𝐴𝐴𝐴𝐴𝑖𝑖|𝑁𝑁
𝑗𝑗=1

2                                        (3) 

in which 1 i, ......, 1 remains the wavelet decomposition from level 0 to level 1. N portrays the 

sum coefficients of each decomposition level.  CDi and CA portray the energy of the feature 

and imprecise at decomposition level i and level 1accordingly. The variance conservation and 

imprecise decorrelation attributes of the Morelette wavelet transform are employed to build 

an arithmetical test for variance homogeneity in lengthy memory procedures. This test relies 

upon the theory that, for a provided duration sequence 𝑥𝑥1,𝑥𝑥2, … 𝑥𝑥𝑛𝑛, every series of wavelet 



coefficients 𝑤𝑤𝑗𝑗,𝑡𝑡 for 𝑥𝑥𝑡𝑡 imprecise samples of 0 mean independent Gaussian haphazard 

variables have variances 𝜎𝜎12,𝜎𝜎2,
2 , … . .𝜎𝜎𝑛𝑛2. The null hypothesis for the test remains: 

𝐻𝐻0: 𝜎𝜎12 = 𝜎𝜎2,
2 = ⋯ = 𝜎𝜎𝑛𝑛2.               (4) 

and alternative hypotheses remain of the format 

𝐻𝐻1:𝜎𝜎12 = 𝜎𝜎𝑐𝑐2 ≠ 𝜎𝜎𝑐𝑐+12 … = 𝜎𝜎𝑛𝑛2             (5) 

in which 𝑐𝑐 portrays an unfamiliar variance change point. The test stat is centered upon the 

employment of the normalized cumulative total of squares µ𝑐𝑐. 

µ𝑐𝑐 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 which 𝑤𝑤𝑗𝑗 portraysDWT scale 𝑖𝑖 DWT coefficients. µ𝑐𝑐 calculates variance 

accumulation in a duration sequence as a time function. A rotated cumulative variance plot, 

hence, gives an average of learning the time dependence of the variance of a sequence – 

when the variance remains static through the time, that is, the null hypothesis is approved, µ𝑐𝑐 

must raise linearly alongside 𝑐𝑐 at about 45 degrees having every haphazard variable provide a 

similar variance quantity; contrastingly, when 𝐻𝐻0 remains denied, substantial divergence out 

of 45-degree line would happen.  

3.3 Feature extraction by Convolutional Neural Networks 

A Scaling Layer (SL) is initially provided that remains a construction block employed for 

adaptatively excerpting efficient data-driven spectrogram resembling features out of 

unprocessed EEG signals. Next, a completely CNN-based on the SL is presented. 

 We contemplate a multiple kernel convolutional layer, which obtains a 

unidimensional signal having shape sampling points, one remains as input and evolves as 

output a bidimensional spectrogram resembling feature map having shape sampling points, 

and scaling levels through the ensuing layer-wise propagation rule. 

𝑯𝑯𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝒍𝒍) = 𝜹𝜹(𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 (𝒍𝒍) + 𝒅𝒅𝒐𝒐𝒅𝒅𝒅𝒅𝒃𝒃𝒃𝒃𝒅𝒅𝒐𝒐𝒍𝒍𝒅𝒅(𝒅𝒅𝒅𝒅𝒃𝒃𝒘𝒘𝒅𝒅𝒐𝒐, 𝒍𝒍) × 𝑯𝑯𝒃𝒃𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐)        (6) 

in which 𝑯𝑯𝒃𝒃𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐
 portrays the input vector having shape duration phases – 1, that is, the 

unidimensional signal, 𝑯𝑯𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐
 portrays the activations matrix having shape duration phases 

– scaling levels, that is, the data-driven spectrogram resembling feature map, bias portrays the 

biases for the multiple kernel produced by scaling a fundamental kernel, 𝜹𝜹(. ) portrays an 

activation function, weight portrays the fundamental kernel out of what the rest of the kernels 



will be scaled,  and 𝒍𝒍 portrays a hyper-criterion, which regulates the scaling level. Down 

Sample remains a pooling agent, which downsamples the weight by a mean filter having a 

dimension two window, performing it one time. It scales the data-driven design weight 

towards a particular duration for capturing particular frequency-like portrayals out of 𝑯𝑯𝒃𝒃𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐
. 

Presume that we desire to excerpt features for signal 𝑯𝑯𝒃𝒃𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐 in the 𝒍𝒍th scaling level. At first, 

the 𝒍𝒍th scaling level kernel is produced that is scaled out of 𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡 by down sample 𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡. 

Next, the scaled kernel’s cross-correlation agent and 𝑯𝑯𝒃𝒃𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐
 are executed. Later, the former 

outcome and the  𝑠𝑠𝑖𝑖𝑏𝑏𝑠𝑠 (𝐴𝐴), are added and supply the total to the activation function 𝜹𝜹(. ). This 

total scaling level 𝑡𝑡𝑠𝑠𝐴𝐴 procedure is reiterated having hyper-criterion’ disparate formats 𝐴𝐴 upon 

zero range to maximal scaling level 𝑚𝑚𝑠𝑠𝐴𝐴 in which the 𝑚𝑚𝑠𝑠𝐴𝐴 remains the 𝐴𝐴𝑡𝑡ℎ level, which 

creates the vector length 𝑑𝑑𝑑𝑑𝑤𝑤𝑑𝑑𝑑𝑑𝑏𝑏𝑚𝑚𝑑𝑑𝐴𝐴𝑤𝑤 (𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡, 𝐴𝐴) equivalent to one, and the 𝑡𝑡𝑠𝑠𝐴𝐴 = 𝑚𝑚𝑠𝑠𝐴𝐴 + 1. 

Lastly, the entire excerpted feature vectors are stacked into a two-dimensional tensor for 

acquiring the data-driven spectrogram-like feature map. 

3.4 EEG classification employing deep learning 

The layers remain built of an array of neurons. Among them, each layer remains 

linked to entire neurons in the layer. The last completely linked layers are employed for 

portraying the anticipation and generating the outcome layer. CNNs are organized for 

mapping an image data into an output variable that demonstrated very efficient for any 

anticipation issue incorporating features as an input and considered as go-to methodology. 

The classification of the CNN framework incorporates every neuron’s input that is linked to 

the local receptive field of the former layer and inclines towards the local feature retrieval. 

The CNN’s prime element remains the convolutional layer. The layers’ criteria comprise a 

kernel, which contains the least responsive deflect yet expands via the total deepness of the 

input content. The extra convolutional layers we give, the finer output we obtain since every 

layer lessens the input features’ quantity to completely linked layers as illustrated in figure 2.  

 



 

Figure 2. ID-CNN framework for classification 

Let the input signal’s sequence be s’i in which 𝑖𝑖 = 1,2,3, … .𝑑𝑑𝑖𝑖 and filter be 𝑓𝑓𝑖𝑖 in 

which 𝑖𝑖 = 1,2,3, … .𝑚𝑚. Herein, the signal sequence’s length ni remains greater than the 

filter’s length m. The filter will be executed centered upon the former layer’s input features 

via a limited convolution mechanism. The 1D-CNN’s convoluted output 𝑥𝑥𝑖𝑖 is expressed as, 

𝑥𝑥𝑖𝑖 = ∑ 𝑓𝑓𝑔𝑔𝑚𝑚
𝑔𝑔=1 × 𝑠𝑠𝑖𝑖−𝑔𝑔+1         (7) 

In above equation (7), each neuron in the 𝑑𝑑𝑡𝑡ℎ layer is evaluated with the local window 

(𝑑𝑑 − 1)𝑡𝑡ℎ layer for the local connected network. The estimation in the network is based on 

non-linear activation function 𝑏𝑏𝑓𝑓( ̂𝑠𝑠) in the convolutional layer. With the 1D-CNN paradigm 

the activation function is employed with the higher module convergerce denoted as in 

equation (8) 

𝑏𝑏𝑓𝑓(𝑠𝑠′) = max (0, 𝑠𝑠′)          (8) 

Additionally, the 𝑞𝑞𝑡𝑡ℎ neuron’s input of the 𝑑𝑑𝑡𝑡ℎ layer is formulated as, 

𝑐𝑐𝑞𝑞𝑑𝑑 = 𝑏𝑏𝑓𝑓(�𝑓𝑓𝑟𝑟𝑑𝑑
𝑚𝑚

𝑟𝑟=1

× 𝑐𝑐𝑞𝑞−𝑟𝑟+𝑚𝑚𝑑𝑑−1 + ℎ𝑑𝑑) 

= 𝑏𝑏𝑓𝑓(𝑓𝑓𝑑𝑑 × 𝑐𝑐(𝑞𝑞−𝑚𝑚+1):𝑞𝑞
𝑑𝑑−1 + ℎ𝑑𝑑)                  (9) 

In the aforesaid formula, the offset criteria are regarded to be ℎ𝑞𝑞 in which 𝑞𝑞 =

1,2,3, … . 𝑑𝑑𝑖𝑖, and the 𝑚𝑚𝑡𝑡ℎ
 dimension filter is called 𝑓𝑓𝑑𝑑€𝑅𝑅𝑚𝑚   that remains similar for entire 

neurons inside the convolution layer. 1D-CNNs effectively perform in 1D EEG signals 

because of the disparate benefits such as low arithmetical intricacy having easy set 

procedures and effortless training and application alongside some hidden layers.  



The 1D convolution layer’s outputs out of the initial CNN layer or block are regarded 

to be an input in the secondary CNN layer or block. In this secondary layer, BM is 

implemented upon the output out of the former CNN layer, and the former Conv1D 

configuration is enforced into this layer. An additional sub-block called max pooling layer 

(MaxPooling1D) is included finally in the secondary CNN layer wherein MaxPooling1D is 

configured alongside a sliding window having height three. As a result, in the tertiary CNN 

layer, a few modifications are done in the Conv1D layers wherein the Conv1D is configured 

alongside 160 sliding windows (feature detector) having five as kernel dimension, or height 

and a mean pooling layer having similar sliding window height that is employed rather than 

max pooling layer. In the following phase, a dropout layer is regarded as having a rate of 0.5 

for preventing overfitting. Lastly, a completely linked layer called dense layer having a 

softmax activation is employed for producing probabilistic dispensation through the 2 classes 

for obtaining classification outcomes. 

3.4.1 Convolutional layer (Maxpool1D): 

In the convolutional output the feature mapping is performed in the Conv 1D layers 

those act as the input for the 1D max pooling layer, which minimizes the feature map for 

maintaining the maximal value of the feature map in the window patch in pool dimensions. 

The features are either shifted based on the convolutional layer as illustrated in figure 3. The 

maximal pooling is represented as in equation (10) 

𝑐𝑐ℎ𝑙𝑙 = 𝑚𝑚𝑏𝑏𝑥𝑥𝑐𝑐𝑝𝑝𝑙𝑙−1.𝑟𝑟ℎ                        (10) 

in which 𝑟𝑟ℎ represents the pooling area having index h. In our study, the pool dimension and 

stride’s value are considered as two. A representation of the max pooling mechanism having 

these criteria is provided in which 𝑐𝑐𝑚𝑚1 = max (𝑐𝑐1, 𝑐𝑐2); 𝑐𝑐𝑚𝑚2 = max(𝑐𝑐3, 𝑐𝑐4) ; 𝑐𝑐𝑚𝑚3 =

max (𝑐𝑐5, 𝑐𝑐6). 

 

Figure 3. Representation of convolution mechanism 



3.4.2 Dropout and flatten layer 

The flatten layer converts the input data as a unidimensional vector that would be 

supplied to the completely linked/dense layer. A dropout criterion is included subsequent to 

the flatten layer that assists the framework for universalizing splendidly by lessening 

overfitting while doing the training procedure. It is attained by haphazardly fixing the 

activations of a few nodes to 0 as defined by a dropout rate. Our study employs a 0.25 

dropout rate.  

3.4.3 Classification with Dense layer  

The flattened output is provided as an input to the subsequent layer, that is, 

dense/completely joined layer that generates the classification output having the size 𝑀𝑀 × 1 
in which 𝑀𝑀 portrays the classes’ quantity. Substantially, the layer mechanism could be 

portrayed by, 

𝑑𝑑𝑠𝑠𝑡𝑡𝑑𝑑𝑠𝑠𝑡𝑡 = 𝜎𝜎(< 𝑖𝑖𝑑𝑑𝑑𝑑𝑠𝑠𝑡𝑡,𝑤𝑤𝑑𝑑 > +𝑠𝑠𝑑𝑑)              (11) 

in which (< 𝒃𝒃𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐,𝒅𝒅𝒅𝒅 > portrays the dot product betwixt weight vector 𝒅𝒅𝒅𝒅  employed in 

the layer and input, 𝒃𝒃𝒅𝒅 portrays the bias vector for the layer, and 𝝈𝝈 portrays the activation 

function. This study employs the two, activation function as sigmoid and softmax to perform 

the classification in terms of binary and multi-class. The activation function in the sigmoid is 

represented as in equation (12) 

𝜎𝜎(𝑧𝑧) = 1
1+𝑒𝑒−𝑧𝑧

                 (12) 

The sigmoidal function generates the output in binary form based on the computed 

probability value for the classification in binary form according to the class label either zero 

or one. The activation function in the softmax layer is represented in equation (13)  

𝑑𝑑𝑑𝑑𝑓𝑓𝑡𝑡𝑚𝑚𝑏𝑏𝑥𝑥(𝑧𝑧)𝑖𝑖 = 𝑑𝑑𝑖𝑖 = exp(𝑧𝑧)𝑖𝑖
∑ exp(𝑧𝑧)𝑗𝑗𝑚𝑚
𝑗𝑗=1

                  (13) 

in which 𝑧𝑧𝑖𝑖 portrays the output vector’s ith component of the former layer 𝑧𝑧. To determine the 

value of pi between zero and one, the numerator is normalised by the sum of all exponential 

expressions from 1 to M. For multiple class categorization, this layer creates categorical class 

labels. For this layer, we don't use bias vectors, and the weights are initialised using the glorot 

uniform initialise. 



Still, for smaller periods of processing length, the proffered framework attains resembling 

precisions for disparate mental tasks classifications. It remains beneficial for the schemes in 

which swift reply is required, for instance, BCI and neurofeedback schemes. Additionally, 

this could be noticed that the classification precision remains greater for 2 conv1D layers 

when correlated with single or many 2 layers in the proffered framework. Hence, 2 conv1D 

layers remain ideal in the proffered framework for the mental tasks classification.  

 

4.Performance analysis 

The results of the experiment are analysed using Python software, using the following 

parameters: accuracy, precision, recall, f1-score, and False Positive Rate (FPR). These 

parameters are compared with existing methods such as Decision Tree Algorithm 

(DTA)(existing-1)[28], Hybrid Classification Model (HCM) )(existing-2)[29],Morelette 

wavelets Method (MWM) )(objective-1)[30],  and Convolution Neural Network (CNN))( 

objective-2), with proposed 1D-CNN.The formulas for the chosen parameters are given 

below: 

A comparison of the accuracy of different existing DTA, HCM,MWM,CNN methods 

and proposed ID-CNN method is shown in table1
 

Table 1. Comparison of the accuracy 

Count of 
epochs 

DTA HCM MWM CNN 1D-CNN 

100 0.82 0.95 0.85 0.92 0.98 
200 0.81 0.98 0.86 0.93 0.97 
300 0.83 0.96 0.85 0.94 0.99 
400 0.82 0.96 0.88 0.93 0.96 
500 0.81 0.95 0.87 0.92 0.97 

 



Figure.4 Correlation of accuracy 

The figure 4 illustrates the comparison of accuracy between DTA, HCM,MWM,CNN 

methods and proposed ID-CNN method.
 
 Analytical procedures are shown on the X axis, 

while the percentage of correctness is plotted on the Y axis.  When compared, existing DTA, 

HCM,MWM,CNN methods achieve 0.8248, 0.98, 0.8818 and 0.9325while the proposed ID-

CNN method achieves 0.992 of accuracy.   

A comparison of the precision of different existing DTA, HCM,MWM,CNN methods and 

proposed ID-CNN method is shown in table 2.
 

Table 2. Comparison of the of precision 

Count of 
epochs 

DTA HCM MWM CNN 1D-CNN 

100 0.98 0.98 0.95 0.95 0.98 
200 0.97 0.99 0.94 0.96 0.96 
300 0.96 0.98 0.95 0.95 0.99 
400 0.97 0.97 0.94 0.94 0.97 
500 0.96 0.99 0.93 0.94 0.97 

 

Figure.5 Correlation of precision 

The figure 5 illustrates the comparison of precision between DTA, HCM,MWM,CNN 

methods and proposed ID-CNN method . The X axis depicts the different ways of analysis, 

while the Y axis displays the degree of precision attained.  When compared, existing DTA, 

HCM,MWM,CNN methods achieve 0.908, 0.99, 0.944 and 0.965while the proposed ID-CNN 

method achieves 0.993of precision.   



A comparison of the recall of different existing DTA, HCM,MWM,CNN methods and 

proposed ID-CNN method is shown in table 3. 

Table 3. Comparison of the recall
 

Count of 
epochs 

DTA HCM MWM CNN 1D-CNN 

100 0.78 0.96 0.83 0.97 0.99 
200 0.77 0.97 0.82 0.96 0.98 
300 0.79 0.98 0.83 0.98 0.98 
400 0.76 0.96 0.84 0.94 0.99 
500 0.79 0.98 0.84 0.97 0.97 

 

Figure.6 Correlation of recall 

The figure 6 illustrates the comparison of recall between DTA, HCM,MWM,CNN methods 

and proposed ID-CNN method. Analytical methodologies are shown on the X axis, while the 

recall % is shown on the Y axis.  When compared, existing DTA, HCM,MWM,CNN 

methods achieve 0.7808, 0.98, 0.8395and 0.9061 while the proposed ID-CNN method 

achieves 0.9905 of recall.   

A comparison of the F-measure of different existing DTA, HCM,MWM,CNN methods and 

proposed ID-CNN method is shown in table 4.
 

Table 4. Comparison of the F-measure 

Count of 
epochs 

DTA HCM MWM CNN 1D-CNN 

100 0.84 0.98 0.89 0.94 0.98 
200 0.83 0.87 0.88 0.93 0.99 
300 0.94 0.96 0.87 0.94 0.98 
400 0.82 0.97 0.88 0.94 0.97 
500 0.84 0.98 0.87 0.93 0.98 



 

Figure.7 Correlation of F-measure 

The figure 7 illustrates the comparison of F-measure between DTA, HCM,MWM,CNN 

methods and proposed ID-CNN method. The Y axis displays the F-measure as a percentage, 

while the X axis displays the different techniques of analysis.  When compared, existing 

DTA, HCM,MWM,CNN methods achieve 0.8375, 0.98, 0.8887and 0.9346while the 

proposed ID-CNN method achieves 0.992of F-measure   

A comparison of the False Positive Rate (FPR) of different existing DTA, HCM,MWM,CNN 

methods and proposed ID-CNN method is shown in table 5.
 

Table.5.Comparison of the False Positive Rate (FPR) 

Count of 
epochs 

DTA HCM MWM CNN 1D-CNN 

100 0.12 0.03 0.04 0.03 0.003 
200 0.11 0.02 0.05 0.02 0.004 
300 0.13 0.01 0.06 0.01 0.006 
400 0.11 0.002 0.04 0.03 0.003 
500 0.10 0.007 0.03 0.02 0.004 



 

Figure.8 Correlation of FPR 

The figure 8 illustrates the comparison of FPR between DTA, HCM,MWM,CNN methods 

and proposed ID-CNN method The Y axis displays the FPR as a percentage, while the X axis 

depicts the different techniques of analysis.  When compared, existing DTA, 

HCM,MWM,CNN methods achieve 0.115, 0.0079, 0.064 and 0.0374 while the proposed ID-

CNN method achieves 0.0065 of FPR 

 

Figure.8 Comprehensive correlation betwixt prevailing and proffered methodologies 

The figure 9 illustrates the Comprehensive correlation betwixt prevailing and proffered 

methodologies where X axis shows various parameters used for analysis and Y axis shows 



the values obtained in percentage.  When compared, existing DTA, HCM,MWM,CNN 

methods the proposed ID-CNN method achieves better results. 

A comparison of the Comprehensive comparative analysis of different existing DTA, 

HCM,MWM,CNN methods and proposed ID-CNN method.
 

Table 6. Comparison of the Comprehensive comparative analysis 

Measures DTA 
(Existing_1) 

HCM 
(Existing_2) 

MWN 
(objective_1) 

CNN 
(objective_2) 

Proposed 
(objective_3) 

Accuracy 
 

0.8248 0.98 0.8818 0.9325 0.992 

Precision 0.908 0.99 0.944 0.965 0.993 
Recall 0.7808 0.98 0.8395 0.9061 0.9905 
FPR 0.115 0.0079 0.064 0.0374 0.0065 
F-

measure 
0.8375 0.98 0.8887 0.9346 0.992 

 

5.Conclusion 

In this paper we propose a one-dimensional convolutional neural network (1D-CNN) 

architecture for mental task identification and classification, The suggested architecture 

comprises of a few layer network with feature extraction and artefact suppression. As shown 

by varied activation weights, our proposed CNN architecture has developed discriminating 

feature maps for baseline and distinct mental task categorization, resulting in good accuracy. 

The suggested 1D-CNN achieves accuracy of 0.992, precision of 0.993, recall of 0.9905, FPR 

of 0.0065, and F-measure of 0.992. In the future, we want to investigate the performance of 

the suggested architecture in the absence of EEG data, as well as to build it on real-time 

processor integrates with the real-time latency estimation and categorization of the poer 

consyumption for the estimation of mental tasks. 
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