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SUMMARY

Mental task detection and classification employing solo/restricted channel(s) electroencephalogram (EEG) signals in 
actual time perform a significant part in the pattern of mobile brain-computer interface (BCI) and neurofeedback (NFB) 
schemes. Nevertheless, the actual time registered EEG signals remain frequently adulterated with noises like ocular 
artifacts (OAs) and muscle artifacts (MAs) that decline the handmade features extracted out of EEG signal leading to 
insufficient detection and classification of mental tasks. Hence, we analyse the employment of the latest deep learning 
approaches that in no way need whatsoever physical feature extraction or artifact repression phase. This study proffers 
a one-dimensional convolutional neural network (1D-CNN) framework for mental job detection and classification. The 
proffered framework’s strength can be analysed employing artifact-free and artifact-adulterated EEG signals obtained 
out of publicly accessible datasets especially the Emotiv EPOC headset. It is observed that the proffered 1D-CNN attains 
0.992 of accuracy, 0.993 of precision, 0.9905 of recall, 0.0065 of FPR, and 0.992 of F-measure. Correlative execution 
assessment exhibit that the proffered framework surpasses prevailing techniques not merely concerning classification 
precision yet as well as in strength opposing artifacts. 
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1. INTRODUCTION

 EEG uses electrodes, which are usually placed on the scalp, 
to record the electrical activity of the cerebral cortex. This 
method is extensively used to diagnose sleep problems 
and epilepsy in medical settings [1]. In the real-time BCI 
applications, medical practitioners and EEG gains attracting 
performance for analysis [2]. In actual circumstances, 
however, EEG signal are subjected to different distortion 
in terms of biological and environmental abnormalities 
[3]. Unwanted signals [4], which comprises of the non-
cerebral EEG electrodes and recorded [5] are referred to 
as artefacts. Environmental artefacts [6] and biological 
artefacts [7] are the two types of artefacts. Environmental 
artefacts are signals that originate from outside the human 
interference due to movement of electrodes occurs from 
the external devices such as poer line or electric motors 
[8], whereas the signal with the biological artifacts arises 
due to non-cerebral sources in the human body for the 
ocular and cardiac activity. Consequently, EEG signal 
with the BCI application degrades the artefacts in terms of 
biological and environmental factors [9]. 

Machine learning and pattern identification techniques 
applied in the EEG data. In neural classification, classical 

supervised learning methods such as linear discriminant 
analysis (LDA) [10], decision tree and Support vector 
machine (SVM) which uses the canonical correlation 
analysis (CCA) for the elimination of artifacts. The feature 
dimensionality is minimized with the ICA, LFDA and 
PCA. 

In neural classification applications, neural networks 
were not as popular as they are now because of practical 
difficulties such as excessive computation times and issues 
with vanishing/exploding gradients [11]. Researchers 
studying neural networks may now examine deep learning 
designs (neural network topologies with at least two hidden 
layers) because of recent advances in graphics processing 
units (GPUs), which are both affordable and powerful 
[12]. Because of these developments, deep learning has 
been more popular and useful over the last decade[13]. 
A range of previously challenging domains, including 
photographs, videos, audio, and text were improved as a 
result of this technology. As a result, neural networks are 
assumed to need less prior knowledge of the dataset in 
order to function well [14–15].

Medical imaging, which often comprises of the larger 
dataset for examination and analysis for the effective 
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performance analysis. Deep learning model utilized in the 
EEG signal for the utilized decoding and classification, 
those are associated with the low signal to noise ratios 
(SNRs) and higher data dimensionality for the increased 
availability with the massive EEG datasets [16]. Complex 
architecture and input signals such as time-frequency 
components in 2D or 3D form in the single or multi-
channel EEG with the CNN-based workload classification 
model [17-18]. A 1D-CNN architecture is presented in this 
research to detect and categorise mental processes from 
single EEG channels. The contribution of this wok are as 
follows,

• To remove the noise and artifacts using Morelette 
wavelet based pre-processing method and extract the 
relevant feature in the EEG signal in raw format using 
CNN model. 

• To design low complex subject-independent 
architecture based on 1D-CNN and compare it with 
the traditional method by using Emotiv EPOC headset 
dataset.

The rest of this chapter is ordered as follows - Section 2 
mentions a few existing research works, Section 3 shows 
the proposed approach and methodologies, Section 4 
exhibits the experimental outcomes and discussion, and, 
finally, Section 5 ends up with conclusion and future work.

2. LITERATURE WORKS

In [19] developed a model to evaluate the physical or signal 
interference in the EEG artifacts. The developed model 
integrates the decomposition model with the Regenerative 
Multi-Dimensional Singular Value Decomposition (RMD-
SVD). The proposed model uses the multivariate data 
Independent Component Analysis (ICA) data from the 
acquired signal. With the application of the regenerative 
reference input signal is constructed and evaluated with 
singular value decomposition. The performance analysis 
expressed that the proposed model exhibits improved 
performance in terms of SNR, PSNR, MSE, and so 
on. Additionally, the proposed model exhibits higher 
elimination efficiency with consideration of the different 
filters. In [20] presented a model to evaluate the EEG 
epoch probability based on consideration of the statistical 
features such as entropy, kurtosis, skewness, and index of a 
periodic waveform. The developed model to computes the 
features of the EEG artifacts based on the computation of 
the threshold values. The proposed model exhibits efficient 
performance in the removal of artifacts through automated 
methods. The developed model is efficient and suitable for 
real-time applications. 

In [21] constructed a supervised artifact elimination 
method in EEG based on consideration of chunks with 
the utilization of the independent component analysis. To 
eliminate the ocular artifacts discrete wavelet transform is 
applied for the 29 subjects based on the consideration of 

gestures such as walking and facial expression in the video. 
The EEG features are extracted based on the consideration 
of the 13 morphological features for the classification of 
the eye chunks’ movements. The movements of the eye 
in the EEG signal are processed with the elimination of 
the morphological distortion in the signals. The developed 
method exhibits significant performance in terms of 
mutual information, kurtosis, correlation, phase difference, 
and computational time. The developed model exhibits 
improved sensitivity and specificity for robustness. In [22] 
proposed an intelligent hybrid model for the removal of 
artifacts in the EEG signal. The proposed model uses the 
training and testing evaluation with the One-Dimensional 
Convolutional Neural Network (1D-CNN) integrated with 
the Spider monkey-based Electric Fish Optimization model 
(SM-EFO). The proposed SM-EFO uses the 1D-CNN for 
parameter tuning. The experimental analysis is performed 
with the conventional benchmark datasets to improve 
the performance. The proposed SM-EFO model exhibits 
improved performance than the conventional techniques. In 
[23] presented an efficient modular generative adversarial 
network (GAN) to improve network performance with 
an appropriate training strategy for the EEG artifacts 
removal. The proposed model exhibits the representation 
ability in the model with a reliable BCG generator for 
artifact removal. The proposed GAN model eliminates the 
requirement of hardware and additional reference signal 
requirement. The comparative analysis stated that the 
proposed GAN model significantly eliminates the BCG 
artifacts to retain EEG information. In [24] developed a 
computational intelligence model for identification and 
differentiation artifacts in the EEG signal. The proposed 
computational intelligence model uses the Residual Deep 
Neural Network model in EEG signals with data collected 
from 79 infants. With prediction and statistical analysis 
of the validated features, the dataset is processed with the 
average probability with the temporal window features. 
The developed residual deep neural network exhibits 
the accuracy of 95% with computation of the median 
accuracy. The validation and misclassification accuracy  
is estimated between the range 1% – 11% with the 
validation set of 87%. 

In [25] developed a model for EEG artifacts integrated 
with canonical correlation analysis (OCA) integrated 
with noise adjusted principal component transform 
(NAPCT) for the elimination of the artifacts observed 
through eye blinks. The estimated features provide the 
average signal-to-noise ratio of 3.616 with the root means 
square error value of 42.456 for the EEG artifacts data. 
The estimated correlation coefficient is computed as 
0.8839 with the mutual information value of 1.1546. The 
proposed approach effectively exhibits the EEG artifacts 
for the manual intervention for elimination of the EEG 
artifacts. In [26] presented a one-dimensional residual 
convolutional neural network (1D–ResCNN) for denoising 
EEG signals. The developed 1D – ResCNN model is 
involved in the estimation of the noisy and clean EEG 
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signal. The developed 1D – ResCNN with the elimination 
of the automated noise removal in the contaminated EEG 
signal. The evaluation of the EEG model is based on the 
consideration of the CHB – MIT database. The results 
expressed that the proposed 1D – ResCNN model exhibits 
improved performance for the RMSE and SNR values. In 
[27] constructed a signal decomposition model for the EEG 
artifacts. The developed model exhibits the estimation of 
the variational model decomposition (mVMD) model with 
the limited intrinsic model function in the estimation of the 
EEG signal. The EEG signal is involved in exploitation of 
the EEG artifacts for the identification of the components 
with estimated QRS reference estimation in the signal. The 
developed mVMD model exhibits an average correlation 
value of 97%. 

Conventional machine learning and subject-dependent 
handmade features are the most common methods 
for identifying and classifying mental tasks. Due to 
considerable structural and functional variability across 
participants and EEG non-stationarity, these approaches 
may not be generalizable across persons and datasets. A 
strategy that uses deep learning to learn features from raw 
data during training may be able to solve this problem. In 
Table 1 presented the summary of the literature in EEG 
artifacts.

3. METHODOLOGY

The below Figure 1 exhibits the proffered EEG signal 
classification scheme’s overall methodology flow with 
efficient pre-processing and feature extraction method. 

Initially, the input database is trained, and during this 
procedure, the signals are pre-processed employing 
Morelette wavelet methodology. During pre-processing, 

the signal is rebuilt, and the noise is eliminated at first; 
next, the signal is cleared. Such noise elimination signal 
is provided to feature extraction unit by building CNN 
framework while convolution layer and scaling layer are 
present. Then, we train the 1D-CNN framework employing 
the training database of the classification plan. Subsequent 
to every epoch, the training precision and deprivation are 
noticed in the proffered scheme. The execution is evaluated 
with a few evaluation metrics like accuracy, precision, 
recall, FR, and F1-score of the proffered scheme. 

3.1 DATASET DESCRIPTION

The database employed for the experiential assessment is 
excerpted out of the University of California-Irvine (UCI), 
a machine-learning repository. The database comprises 
15,181 examples of fifteen features. The positioning of 
the electrode chiefly comprises 5 regions like central (C), 
frontal (F), occipital (O), parietal (P), and temporal (T). 
The entire cranium is partitioned as 2 areas – left and right. 
The former portion comprises the O1, P7, T7, FC5, F3, 
F7, and AF3 electrodes. Simultaneously, the latter portion 
comprises O2, P8, T8, F8, FC6, F4, and AF4 electrodes. 
The vision of fourteen channels (that is, AF3, F7, F3, FC5, 
T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4) and class-
based (that is, open and close) EEG signal data for eye 
situation is performed. 

3.2 PRE-PROCESSING EMPLOYING 
MORELETTE WAVELET  
METHODOLOGY

The effectual artifacts elimination out of the EEG signal 
is needed to be applied by excerpting the majority of the 
important non-linear attributes despite the intricate and 
duration-variable signals. Hence, such difficulties should 

Table 1. Summary of literature
Reference Aim Outcome Limitation
[19] developed model to evaluate the physical or 

signal interference in the EEG
Increased SNR, PSNR, MSE Classification is not performed

[20] Estimates the EEG artifacts through proba-
bility threshold

The proposed model exhibits 
superior performance for real-time 
applications

Complexity is higher

[21] Developed a supervised artifact removal Improved sensitivity and specificity Accuracy is not adequate
[22] Proposed a SM-EFO model Increases the overall performance Suitable for benchmark dataset 

alone
[23] Developed a GAN model Eliminates the hardware requirement Classification is not adequate 
[24] Constructed computation intelligence resid-

ual neural network
Accuracy is estimated as 95% The estimated error is minimal

[25] Presented a canonical correlation analysis 
(CCA) and noise adjusted principal compo-
nent transform (NAPCT) 

provides an average signal to noise 
ratio and root mean square error 
values of 3.616 & 42.456 

Classification value is not 
defined

[26] Constructed a 1D – ResCNN model Improved SNR and RMSE value Classification is not performed
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be resolved by embracing a novel EEG artifacts elimination 
methodology by Morelette wavelet methodology. The 
Time-frequency domain is portrayed as a wavelet 
transform. A signal’s Morelette Wavelet Transformation is 
provided by,

 CWT a b
a

t t b
a

dt( , ) ( )� �
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As per Parseval’s theorem, signals remain split up in 
different levels. This is given by,
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in which 1 i,......,1 remains the wavelet decomposition 
from level 0 to level 1. N portrays the sum coefficients 
of each decomposition level.  CDi and CA portray the 
energy of the feature and imprecise at decomposition level 
i and level 1 accordingly. The variance conservation and 
imprecise decorrelation attributes of the Morelette wavelet 
transform are employed to build an arithmetical test for 
variance homogeneity in lengthy memory procedures. This 
test relies upon the theory that, for a provided duration 
sequence x1, x2, … xn, every series of wavelet coefficients  
wj,t  for xt imprecise samples of 0 mean independent 
Gaussian haphazard variables have variances σ σ σ1
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and alternative hypotheses remain of the format
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in which  portrays an unfamiliar variance change point. 
The test stat is centered upon the employment of the 
normalized cumulative total of squares µc.

µc = subj which wj portraysDWT scale j DWT coefficients.  
µc

  calculates variance accumulation in a duration sequence 
as a time function. A rotated cumulative variance plot, 
hence, gives an average of learning the time dependence 
of the variance of a sequence – when the variance remains 
static through the time, that is, the null hypothesis is 
approved, µc must raise linearly alongside  at about 45 
degrees having every haphazard variable provide a similar 
variance quantity; contrastingly, when H0 remains denied, 
substantial divergence out of 45-degree line would happen. 

3.3 FEATURE EXTRACTION BY 
CONVOLUTIONAL NEURAL  
NETWORKS

A Scaling Layer (SL) is initially provided that remains a 
construction block employed for adaptatively excerpting 
efficient data-driven spectrogram resembling features out 
of unprocessed EEG signals. Next, a completely CNN-
based on the SL is presented.

We contemplate a multiple kernel convolutional layer, 
which obtains a unidimensional signal having shape 
sampling points, one remains as input and evolves as 
output a bidimensional spectrogram resembling feature 
map having shape sampling points, and scaling levels 
through the ensuing layer-wise propagation rule.

Houtput (l) = δ(bias (l) + downsample (weignt, l) × Hinput) (6)

in which Hinput portrays the input vector having shape 
duration phases – 1, that is, the unidimensional signal,  
Houtput portrays the activations matrix having shape duration 

Figure 1. System model for EEG signal classification
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phases – scaling levels, that is, the data-driven spectrogram 
resembling feature map, bias portrays the biases for the 
multiple kernel produced by scaling a fundamental kernel,  
δ(·) portrays an activation function, weight portrays the 
fundamental kernel out of what the rest of the kernels will 
be scaled, and l portrays a hyper-criterion, which regulates 
the scaling level. Down Sample remains a pooling agent, 
which downsamples the weight by a mean filter having a 
dimension two window, performing it one time. It scales 
the data-driven design weight towards a particular duration 
for capturing particular frequency-like portrayals out of 
Hinput. Presume that we desire to excerpt features for signal  
Hinput in the th scaling level. At first, the th scaling level 
kernel is produced that is scaled out of  by down sample . 
Next, the scaled kernel’s cross-correlation agent and Hinput 
are executed. Later, the former outcome and the bias (l) 
are added and supply the total to the activation function 
δ(·). This total scaling level  procedure is reiterated having 
hyper-criterion’ disparate formats l upon zero range to 
maximal scaling level msl in which the msl remains the 
lth level, which creates the vector length downSample 
(weight, l) equivalent to one, and the tsl = msl + 1. Lastly, 
the entire excerpted feature vectors are stacked into a 
two-dimensional tensor for acquiring the data-driven 
spectrogram-like feature map.

3.4 EEG CLASSIFICATION EMPLOYING 
DEEP LEARNING

The layers remain built of an array of neurons. Among 
them, each layer remains linked to entire neurons in the 
layer. The last completely linked layers are employed for 
portraying the anticipation and generating the outcome 
layer. CNNs are organized for mapping an image data 
into an output variable that demonstrated very efficient for 
any anticipation issue incorporating features as an input 
and considered as go-to methodology. The classification 
of the CNN framework incorporates every neuron’s input 
that is linked to the local receptive field of the former 
layer and inclines towards the local feature retrieval. The 
CNN’s prime element remains the convolutional layer. The 
layers’ criteria comprise a kernel, which contains the least 
responsive deflect yet expands via the total deepness of the 
input content. The extra convolutional layers we give, the 
finer output we obtain since every layer lessens the input 

features’ quantity to completely linked layers as illustrated 
in Figure 2. 

Let the input signal’s sequence be s’i in which i = 1,2,3, …. ni  
and filter be fi in which i = 1,2,3, …. m. Herein, the signal 
sequence’s length ni remains greater than the filter’s length m.  
The filter will be executed centered upon the former layer’s 
input features via a limited convolution mechanism. The 
1D-CNN’s convoluted output xi is expressed as,

 x f Si gg

m
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� � �� 1 1  (7)

In above equation (7), each neuron in the dth layer is 
evaluated with the local window (d − 1)th layer for the local 
connected network. The estimation in the network is based 
on non-linear activation function af(̂s) in the convolutional 
layer. With the 1D-CNN paradigm the activation function 
is employed with the higher module convergerce denoted 
as in equation (8)

 af s s( ) max( , )� � �0  (8)

Additionally, the qth neuron’s input of the dth layer is 
formulated as,
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In the aforesaid formula, the offset criteria are regarded 
to be hq in which q = 1,2,3, ... ni, and the mth dimension 
filter is called f d€Rm that remains similar for entire neurons 
inside the convolution layer. 1D-CNNs effectively perform 
in 1D EEG signals because of the disparate benefits such 
as low arithmetical intricacy having easy set procedures 
and effortless training and application alongside some 
hidden layers. 

The 1D convolution layer’s outputs out of the initial CNN 
layer or block are regarded to be an input in the secondary 
CNN layer or block. In this secondary layer, BM is 
implemented upon the output out of the former CNN layer, 

Figure 2. ID-CNN framework for classification
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and the former Conv1D configuration is enforced into this 
layer. An additional sub-block called max pooling layer 
(MaxPooling1D) is included finally in the secondary CNN 
layer wherein MaxPooling1D is conFigured alongside 
a sliding window having height three. As a result, in 
the tertiary CNN layer, a few modifications are done in 
the Conv1D layers wherein the Conv1D is conFigured 
alongside 160 sliding windows (feature detector) having 
five as kernel dimension, or height and a mean pooling 
layer having similar sliding window height that is 
employed rather than max pooling layer. In the following 
phase, a dropout layer is regarded as having a rate of 0.5 
for preventing overfitting. Lastly, a completely linked 
layer called dense layer having a softmax activation is 
employed for producing probabilistic dispensation through 
the 2 classes for obtaining classification outcomes.

3.4.1 Convolutional layer (Maxpool1D)

In the convolutional output the feature mapping is 
performed in the Conv 1D layers those act as the input 
for the 1D max pooling layer, which minimizes the feature 
map for maintaining the maximal value of the feature map 
in the window patch in pool dimensions. The features 
are either shifted based on the convolutional layer as 
illustrated in Figure 3. The maximal pooling is represented 
as in equation (10)

 C C rh
l

p
l

n� ��max 1  (10)

in which rn represents the pooling area having index h. 
In our study, the pool dimension and stride’s value are 
considered as two. A representation of the max pooling 
mechanism having these criteria is provided in which  
cm1 = max(c1, c2); cm2 = max(c3, c4); cm3 = max(c5, c6).

3.4.2 Dropout and flatten layer

The flatten layer converts the input data as a unidimensional 
vector that would be supplied to the completely linked/
dense layer. A dropout criterion is included subsequent 
to the flatten layer that assists the framework for 
universalizing splendidly by lessening overfitting while 
doing the training procedure. It is attained by haphazardly 

fixing the activations of a few nodes to 0 as defined by a 
dropout rate. Our study employs a 0.25 dropout rate. 

3.4.3 Classification with dense layer 

The flattened output is provided as an input to the 
subsequent layer, that is, dense/completely joined layer that 
generates the classification output having the size M × 1  
in which M portrays the classes’ quantity. Substantially, the 
layer mechanism could be portrayed by,

 output = σ(<input, wd> + bd)  (11)

in which (< input, wd > portrays the dot product betwixt 
weight vector wd employed in the layer and input, bd portrays 
the bias vector for the layer, and σ portrays the activation 
function. This study employs the two, activation function 
as sigmoid and softmax to perform the classification in 
terms of binary and multi-class. The activation function in 
the sigmoid is represented as in equation (12)

 � ( )z
e z�

� �

1

1
 (12)

The sigmoidal function generates the output in binary 
form based on the computed probability value for the 
classification in binary form according to the class label 
either zero or one. The activation function in the softmax 
layer is represented in equation (13) 

 soft z p
z
z

i i
i

jj

mmax( )
exp( )

exp( )
� �

�� 1

 (13)

in which zi portrays the output vector’s ith component of 
the former layer z. To determine the value of pi between 
zero and one, the numerator is normalised by the sum of 
all exponential expressions from 1 to M. For multiple class 
categorization, this layer creates categorical class labels. 
For this layer, we don’t use bias vectors, and the weights 
are initialised using the glorot uniform initialise.

Still, for smaller periods of processing length, the proffered 
framework attains resembling precisions for disparate 

Figure 3. Representation of convolution mechanism
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mental tasks classifications. It remains beneficial for the 
schemes in which swift reply is required, for instance, BCI 
and neurofeedback schemes. Additionally, this could be 
noticed that the classification precision remains greater for 
2 conv1D layers when correlated with single or many 2 
layers in the proffered framework. Hence, 2 conv1D layers 
remain ideal in the proffered framework for the mental 
tasks classification. 

4. PERFORMANCE ANALYSIS

The results of the experiment are analysed using Python 
software, using the following parameters: accuracy, 
precision, recall, f1-score, and False Positive Rate (FPR). 
These parameters are compared with existing methods 
such as Decision Tree Algorithm (DTA) (existing-1)[28], 
Hybrid Classification Model (HCM)) (existing-2)[29], 
Morelette wavelets Method (MWM)) (objective-1)[30],  
and Convolution Neural Network (CNN)) (objective-2), 
with proposed 1D-CNN.The formulas for the chosen 
parameters are given below:

A comparison of the accuracy of different existing DTA, 
HCM, MWM, CNN methods and proposed ID-CNN 
method is shown in table1

The Figure 4 illustrates the comparison of accuracy between 
DTA, HCM,MWM,CNN methods and proposed ID-CNN 
method.  Analytical procedures are shown on the X axis, 
while the percentage of correctness is plotted on the Y 
axis.  When compared, existing DTA, HCM,MWM,CNN 

methods achieve 0.8248, 0.98, 0.8818 and 0.9325 while 
the proposed ID-CNN method achieves 0.992 of accuracy.  

A comparison of the precision of different existing DTA, 
HCM,MWM,CNN methods and proposed ID-CNN 
method is shown in Table 2.

The Figure 5 illustrates the comparison of precision 
between DTA, HCM,MWM,CNN methods and proposed 
ID-CNN method. The X axis depicts the different 
ways of analysis, while the Y axis displays the degree 
of precision attained.  When compared, existing DTA, 
HCM,MWM,CNN methods achieve 0.908, 0.99, 0.944 
and 0.965 while the proposed ID-CNN method achieves 
0.993of precision.  

A comparison of the recall of different existing DTA, 
HCM,MWM,CNN methods and proposed ID-CNN 
method is shown in table 3.

The Figure 6 illustrates the comparison of recall between 
DTA, HCM,MWM,CNN methods and proposed ID-CNN 
method. Analytical methodologies are shown on the X 
axis, while the recall % is shown on the Y axis.  When 
compared, existing DTA, HCM,MWM,CNN methods 
achieve 0.7808, 0.98, 0.8395and 0.9061 while the proposed 
ID-CNN method achieves 0.9905 of recall.  

A comparison of the F-measure of different existing 
DTA, HCM,MWM,CNN methods and proposed ID-CNN 
method is shown in table 4.

Table 1. Comparison of the accuracy
Count of epochs DTA HCM MWM CNN 1D-CNN
100 0.82 0.95 0.85 0.92 0.98
200 0.81 0.98 0.86 0.93 0.97
300 0.83 0.96 0.85 0.94 0.99
400 0.82 0.96 0.88 0.93 0.96
500 0.81 0.95 0.87 0.92 0.97

Figure 4. Correlation of accuracy

Table 2. Comparison of the of precision
Count of epochs DTA HCM MWM CNN 1D-CNN
100 0.98 0.98 0.95 0.95 0.98
200 0.97 0.99 0.94 0.96 0.96
300 0.96 0.98 0.95 0.95 0.99
400 0.97 0.97 0.94 0.94 0.97
500 0.96 0.99 0.93 0.94 0.97



8

TECHNOLOGIES AND THEIR EFFECTS ON REAL-TIME SOCIAL DEVELOPMENT, VOL 167, PART A2 (S), 2025

The Figure 7 illustrates the comparison of F-measure 
between DTA, HCM,MWM,CNN methods and proposed 
ID-CNN method. The Y axis displays the F-measure 
as a percentage, while the X axis displays the different 
techniques of analysis.  When compared, existing DTA, 
HCM,MWM,CNN methods achieve 0.8375, 0.98, 

0.8887and 0.9346while the proposed ID-CNN method 
achieves 0.992of F-measure  

A comparison of the False Positive Rate (FPR) of different 
existing DTA, HCM,MWM,CNN methods and proposed 
ID-CNN method is shown in table 5.

Figure 5. Correlation of precision

Table 3. Comparison of the recall
Count of epochs DTA HCM MWM CNN 1D-CNN
100 0.78 0.96 0.83 0.97 0.99
200 0.77 0.97 0.82 0.96 0.98
300 0.79 0.98 0.83 0.98 0.98
400 0.76 0.96 0.84 0.94 0.99
500 0.79 0.98 0.84 0.97 0.97

Table 4. Comparison of the F-measure
Count of epochs DTA HCM MWM CNN 1D-CNN
100 0.84 0.98 0.89 0.94 0.98
200 0.83 0.87 0.88 0.93 0.99
300 0.94 0.96 0.87 0.94 0.98
400 0.82 0.97 0.88 0.94 0.97
500 0.84 0.98 0.87 0.93 0.98

Figure 6. Correlation of recall
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The Figure 8 illustrates the comparison of FPR between 
DTA, HCM,MWM,CNN methods and proposed 
ID-CNN method The Y axis displays the FPR as a 
percentage, while the X axis depicts the different 
techniques of analysis.  When compared, existing DTA, 
HCM,MWM,CNN methods achieve 0.115, 0.0079, 
0.064 and 0.0374 while the proposed ID-CNN method 
achieves 0.0065 of FPR.

Figure 7. Correlation of F-measure

Table.5.Comparison of the False Positive Rate (FPR)
Count of epochs DTA HCM MWM CNN 1D-CNN
100 0.12 0.03 0.04 0.03 0.003
200 0.11 0.02 0.05 0.02 0.004
300 0.13 0.01 0.06 0.01 0.006
400 0.11 0.002 0.04 0.03 0.003
500 0.10 0.007 0.03 0.02 0.004

Figure 8. Correlation of FPR

Table 6. Comparison of the Comprehensive comparative analysis
Measures DTA (Existing_1) HCM (Existing_2) MWN (objective_1) CNN (objective_2) Proposed (objective_3)

0.8248 0.98 0.8818 0.9325 0.992
Precision 0.908 0.99 0.944 0.965 0.993
Recall 0.7808 0.98 0.8395 0.9061 0.9905
FPR 0.115 0.0079 0.064 0.0374 0.0065
F-measure 0.8375 0.98 0.8887 0.9346 0.992
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The Figure 9 illustrates the Comprehensive correlation 
betwixt prevailing and proffered methodologies where X 
axis shows various parameters used for analysis and Y axis 
shows the values obtained in percentage.  When compared, 
existing DTA, HCM,MWM,CNN methods the proposed 
ID-CNN method achieves better results.

A comparison of the Comprehensive comparative analysis 
of different existing DTA, HCM,MWM,CNN methods and 
proposed ID-CNN method.

5. CONCLUSION

In this paper we propose a one-dimensional convolutional 
neural network (1D-CNN) architecture for mental task 
identification and classification, The suggested architecture 
comprises of a few layer network with feature extraction 
and artefact suppression. As shown by varied activation 
weights, our proposed CNN architecture has developed 
discriminating feature maps for baseline and distinct 
mental task categorization, resulting in good accuracy. The 
suggested 1D-CNN achieves accuracy of 0.992, precision 
of 0.993, recall of 0.9905, FPR of 0.0065, and F-measure of 
0.992. In the future, we want to investigate the performance 
of the suggested architecture in the absence of EEG data, 
as well as to build it on real-time processor integrates with 
the real-time latency estimation and categorization of the 
poer consyumption for the estimation of mental tasks.
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