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Abstract 

 Diabetic retinopathy is a vision-threatening complication of diabetes that affects the 

retina, the light-sensitive tissue at the back of the eye. This condition arises as a result of 

prolonged high blood sugar levels, which can damage the small blood vessels in the retina. 

Diabetic retinopathy typically progresses through different stages, starting with mild non-

proliferative retinopathy, where small blood vessels in the retina become weakened and leak. 

The classification of diabetic retinopathy plays a fundamental role in assessing the 

effectiveness of treatment and monitoring the progression of the disease over time, ultimately 

contributing to the preservation of patients' vision and their overall quality of life. This 

research paper presents efficient technique for diabetic retinopathy (DR) classification and 

grading using data augmentation and a dynamic weighted optimization approach. The study 

contributes to the field of DR in several significant ways. Firstly, advanced data 

augmentation techniques are employed to generate diverse and representative features from 

retinal fundus images, enhancing the robustness and generalization capabilities of the models. 

Secondly, novel segmentation approaches, including multi-level Otsu thresholding and 

morphological operations, accurately localize and isolate affected regions in retinal images. 

Thirdly, innovative feature extraction and selection methods, such as Gray-Level Co-

occurrence Matrix (GLCM) and dynamic Flemingo optimization, improve the selection of 



discriminative features for DR classification. Additionally, a novel cascaded voting ensemble 

deep neural network model is introduced, which combines the predictions of multiple 

learning algorithms to enhance classification performance. Lastly, the research addresses the 

grading of diabetic retinopathy by aligning the classification results with a standardized 

grading system, providing clinicians with accurate severity assessments for effective 

treatment decisions. Overall, this papers offers valuable insights and methodologies for 

improving the classification and grading of diabetic retinopathy, thereby contributing to the 

advancement of diagnosis and management strategies in the field. 

Keywords: Data augmentation, diabetic retinopathy, classification, grading, dynamic 

weighted optimization, deep learning 

1. Introduction 

Diabetic retinopathy (DR) is a common complication of diabetes that affects the eyes and 

can lead to vision loss or blindness if left untreated. It is caused by damage to the blood 

vessels in the retina, the light-sensitive tissue at the back of the eye [1]. DR progresses 

through different stages of severity, ranging from mild to severe and proliferative forms. 

Early detection and accurate diagnosis of DR are crucial for effective treatment and 

prevention of vision loss. With the advancements in medical imaging technology, digital 

retinal fundus images have become an essential tool for diagnosing and monitoring DR. 

These images capture the structure of the retina and provide valuable information about the 

presence and severity of the disease [2]. Diabetic retinopathy (DR) presents several 

significant issues that impact its diagnosis, treatment, and management. One of the primary 

challenges is the late detection of the disease. In many cases, patients remain asymptomatic 

until the advanced stages of DR, making it difficult to initiate timely interventions [3]. This 

delay in detection can lead to irreversible damage to the retina and increased risk of vision 

loss. Therefore, raising awareness among individuals with diabetes about the potential risks 

and complications of DR is crucial. Another issue is the limited access to regular screenings 

and eye care services, particularly in underserved communities or remote areas. Lack of 

access to healthcare facilities, trained ophthalmologists, and specialized equipment for retinal 

imaging can hinder early diagnosis and proper management of DR [4]. This issue is 

particularly prevalent in low-income countries and regions with limited healthcare 

infrastructure. Interpretation and consistency in grading and classification of DR is another 

challenge. The grading of DR severity is typically based on subjective assessment by 



ophthalmologists, leading to potential variations and inconsistencies in diagnoses [5]. The 

lack of standardized grading systems and uniform interpretation guidelines can impact the 

accuracy and reliability of DR assessments, affecting treatment decisions and patient 

outcomes. Additionally, the increasing prevalence of diabetes worldwide contributes to a 

growing burden of DR [6]. The rising number of individuals with diabetes places additional 

strain on healthcare systems, increasing the demand for diabetic retinopathy screenings, 

treatment, and long-term management. Meeting this demand requires adequate resources, 

trained healthcare professionals, and efficient healthcare delivery systems. 

The complexity of DR management necessitates a multidisciplinary approach involving 

collaboration between ophthalmologists, endocrinologists, primary care physicians, and other 

healthcare providers [7]. Coordinating care and ensuring effective communication among 

different specialties can be challenging, potentially leading to fragmented care and 

suboptimal outcomes for patients. Addressing these issues requires a comprehensive 

approach that includes increasing awareness and education about DR, improving access to 

regular screenings and eye care services, implementing standardized grading systems, and 

fostering collaborative care models [8]. Additionally, advancements in technology, such as 

telemedicine and artificial intelligence-based image analysis, hold promise in enhancing the 

efficiency and accuracy of DR diagnosis and management. 

Deep learning has revolutionized the field of diabetic retinopathy (DR) by offering 

powerful capabilities in image analysis, diagnosis, screening, and management [9]. 

Convolutional neural networks (CNNs), a key component of deep learning, have 

demonstrated exceptional performance in analyzing retinal fundus images for the detection 

and classification of DR. By automatically extracting relevant features from these images, 

deep learning models enable accurate identification of DR severity levels and differentiation 

between diabetic and non-diabetic retinas [10]. One of the significant advantages of deep 

learning in DR is its potential for automated screening. By leveraging deep learning 

algorithms, large-scale populations at risk of DR can be efficiently screened. These models 

analyze retinal images, identifying individuals who require further evaluation or referral to 

ophthalmologists. This automated screening process significantly enhances the scalability and 

efficiency of DR screening programs, particularly in regions with limited healthcare 

resources [11]. 



Moreover, deep learning techniques contribute to the early detection and monitoring of 

DR progression. Through analyzing longitudinal retinal images, deep learning models can 

identify subtle changes in the retina associated with the development and progression of DR. 

This early detection facilitates timely interventions and management strategies, potentially 

preventing or mitigating vision loss [12]. Deep learning-based segmentation models play a 

crucial role in accurately delineating retinal structures, such as blood vessels, optic discs, and 

lesions, in retinal images. Accurate segmentation is essential for quantifying disease-related 

changes, measuring anatomical features, and aiding in the diagnosis and monitoring of DR. 

Deep learning models have shown promising results in segmenting retinal structures with 

high accuracy and efficiency [13]. Additionally, deep learning enables personalized treatment 

and prognosis in DR. By integrating patient-specific data, including retinal images, clinical 

records, and genetic information, deep learning models can assist in predicting disease 

progression, identifying optimal treatment approaches, and tailoring management plans to 

individual patients [14]. This personalized approach enhances patient outcomes and 

optimizes resource allocation in healthcare settings. However, it is crucial to ensure the 

reliability, generalizability, and ethical considerations of deep learning models in DR. 

Rigorous validation and clinical evaluation are necessary before integrating these models into 

clinical workflows. Integration should prioritize collaboration with healthcare professionals 

to enhance decision-making and provide patient-centered care [15].The research makes 

several significant contributions to the field of diabetic retinopathy (DR): 

1. The research performs data augmentation to generate diverse and representative 

features from retinal fundus images. By incorporating variations such as rotation, scaling, and 

noise, the augmented dataset captures a wider range of potential patterns and characteristics 

present in real-world retinal images. This improves the robustness and generalization 

capabilities of the models developed in the research. 

2.  The research explores and develops segmentation approaches, such as the Multi-level 

Otsu thresholding approach and Morphological operations, for accurately segmenting the 

affected regions in the retinal images. These segmentation techniques enable precise 

localization and isolation of the regions associated with diabetic retinopathy, providing 

valuable insights for analysis and diagnosis. 

3.  The research introduces the use of the Gray-Level Co-occurrence Matrix (GLCM) 

extracted features from retinal images. Additionally, it proposes a novel feature selection 



model called Dynamic Flemingo Optimization. These advancements contribute to improving 

the selection of discriminative features for DR classification, enhancing the accuracy and 

efficiency of the classification models. 

4.  The research introduces a novel deep learning model, the Cascaded Voting Ensemble 

Deep Neural Network model, which combines the predictions of multiple learning algorithms 

using a weighted average approach. This model leverages the collective knowledge and 

predictions of diverse algorithms, improving the overall performance and reliability of DR 

classification. 

5. The research addresses the computation of grading in detected DR in fundus images, 

aligning the classification results with a standardized grading system. This enables clinicians 

to assess the severity of DR accurately and make informed decisions regarding appropriate 

treatment and management strategies. 

2. Related Works 

In recent years, there has been a growing body of research exploring the application of 

deep learning techniques in diabetic retinopathy (DR) detection and diagnosis. This section 

provides an overview of the related works in the field, highlighting the key contributions and 

advancements in deep learning-based approaches for DR. [16] proposed a multi-stage deep 

learning framework for DR grading using retinal fundus images. Their approach consisted of 

an initial lesion segmentation stage followed by a classification stage. The authors achieved 

promising results in terms of accuracy and demonstrated the potential of deep learning in 

accurately grading DR severity levels. [17] developed a novel deep convolutional neural 

network (CNN) architecture for DR detection. Their model utilized residual connections and 

attention mechanisms to improve feature extraction and classification performance. The 

proposed model achieved state-of-the-art results on benchmark DR datasets, highlighting the 

effectiveness of deep learning for DR detection. 

 [18] focused on the interpretation and explainability of deep learning models for DR 

diagnosis. They proposed a visualization technique based on gradient-weighted class 

activation mapping (Grad-CAM) to identify the regions of interest in retinal images that 

contributed most to the prediction. This work enhanced the interpretability of deep learning 

models and provided valuable insights for clinicians. [19] addressed the challenge of limited 

annotated data in DR research. They proposed a semi-supervised learning approach that 

leveraged a combination of labeled and unlabeled retinal images. Their method achieved 



competitive performance with reduced annotation effort, demonstrating the potential of deep 

learning in scenarios with limited labeled data. [20] explored the use of generative adversarial 

networks (GANs) for synthesizing realistic retinal images to augment the training data. The 

generated images were used to improve the generalization capability of deep learning models 

for DR classification. Their results showed improved performance when utilizing synthesized 

data in combination with real retinal images. [21] proposed a novel two-stage deep learning 

framework for DR diagnosis. Their approach consisted of a lesion segmentation stage 

followed by a classification stage. The authors achieved state-of-the-art results on a large DR 

dataset, demonstrating the potential of deep learning in accurately diagnosing DR. 

 [22] proposed a multi-scale feature fusion framework for DR grading using retinal 

fundus images. Their approach leveraged features extracted from multiple scales and 

achieved high accuracy in DR grading. This work demonstrated the importance of feature 

fusion for DR diagnosis using deep learning. [23] proposed a hybrid deep learning model for 

DR detection and classification. Their approach combined convolutional neural networks 

(CNNs) with long short-term memory (LSTM) networks to capture both spatial and temporal 

features from retinal images. The proposed model achieved high accuracy in DR detection 

and classification. [24] developed a deep learning-based system for automatic DR detection 

and severity grading. Their approach utilized a combination of CNNs and support vector 

machines (SVMs) to classify retinal images into different severity levels. The proposed 

system achieved high accuracy and showed promising results in clinical settings. [25] 

proposed a deep learning-based approach for early detection of diabetic retinopathy using 

fundus images. Their model utilized a combination of convolutional neural networks (CNNs) 

and recurrent neural networks (RNNs) to capture spatial and sequential information from 

retinal images. The approach achieved high accuracy in detecting early-stage diabetic 

retinopathy. 

 [26] developed a deep learning model for diabetic retinopathy detection and severity 

grading using a multi-task learning framework. Their approach simultaneously learned to 

classify the presence of diabetic retinopathy and predict the severity level. The proposed 

model showed improved performance compared to single-task models. [27] proposed a deep 

adversarial network for the segmentation of diabetic retinopathy lesions in fundus images. 

Their model integrated a U-Net architecture with generative adversarial networks (GANs) to 

accurately segment the affected regions. The approach demonstrated robust segmentation 

performance and provided valuable insights for diabetic retinopathy diagnosis. [28] presented 



a deep ensemble model for diabetic retinopathy detection and classification. The model 

combined multiple deep learning architectures, including convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs), to leverage diverse representations. The 

ensemble approach achieved improved performance and robustness in classifying diabetic 

retinopathy. [29] proposed a novel deep learning-based method for diabetic retinopathy 

screening using a combination of fundus images and optical coherence tomography (OCT) 

scans. Their approach utilized a dual-modal fusion network to integrate information from 

both imaging modalities and achieved high accuracy in detecting diabetic retinopathy. 

3. Proposed Method 

The goal of this research is to develop an automated system for the analysis and 

classification of diabetic retinopathy using retinal fundus images. The research involves 

several key steps, starting with the loading of data from standard benchmark datasets 

consisting of retinal fundus images with annotations of DR severity. The dataset for the 

splitting of the dataset are presented in equation (1) and (2) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠: 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  =  {(𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)}                                               (1) 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠: 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  =  {(𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)}                                                        (2) 

To ensure reliable training and evaluation of the classification models, the dataset is 

divided into training and test sets based on the severity levels of DR. This division allows us 

to assess the performance of the models in accurately predicting the severity of DR. To 

enhance the effectiveness of the models, data augmentation techniques are employed. These 

techniques involve generating new images with variations in factors such as rotation, scaling, 

and noise, to augment the original dataset. This augmentation helps to capture diverse 

features and improve the robustness of the models. Segmentation of the affected regions in 

the retinal images is crucial for accurate analysis and diagnosis of DR. The image rotation, 

scaling and noisy images of the DR images is represented as in equation (3) 

𝑅𝑅𝑅𝑅𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠𝑅𝑅 𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇𝑠𝑠 =  𝑅𝑅𝑅𝑅𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠(𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇𝑠𝑠, 𝜃𝜃)                                      (3) 

𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆𝑠𝑠𝑅𝑅 𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇𝑠𝑠 =  𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆𝑠𝑠(𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇𝑠𝑠, 𝑠𝑠𝑆𝑆𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇_𝑓𝑓𝑇𝑇𝑆𝑆𝑠𝑠𝑅𝑅𝑇𝑇)                                  (4) 

𝑁𝑁𝑅𝑅𝑇𝑇𝑠𝑠𝑦𝑦 𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇𝑠𝑠 =  𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇𝑠𝑠 +  𝑁𝑁𝑅𝑅𝑇𝑇𝑠𝑠𝑠𝑠                                         (5) 

This research explores segmentation approaches such as Multi-level Otsu thresholding 

and Morphological operations to extract the affected regions from the retinal images. 

Additionally, this study focuses on feature extraction using the Gray-Level Co-occurrence 



Matrix (GLCM) and proposes a novel feature selection model called Dynamic Flemingo 

Optimization. The GLCM features capture texture information from the retinal images, while 

the proposed feature selection model optimizes the selection of the most discriminative 

features for DR classification [30-31]. To further enhance the accuracy and reliability of the 

classification, a novel Cascaded Voting Ensemble Deep Neural Network model is designed 

and developed. This model combines the predictions of multiple learning algorithms using a 

weighted average approach, resulting in improved classification performance with augmented 

images and GLCM features are computed using equation (6) and (7)  

𝐴𝐴𝐴𝐴𝑇𝑇𝐼𝐼𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠𝑅𝑅 𝑇𝑇𝐼𝐼𝑇𝑇𝑇𝑇𝑠𝑠: 𝑋𝑋𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎  =  𝑓𝑓(𝑋𝑋𝑂𝑂𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑂𝑂)                                                    (6) 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑃𝑃,𝜃𝜃,𝑅𝑅)  =  ∑ ∑ 𝐼𝐼(𝑇𝑇, 𝑗𝑗)  ∗  𝐼𝐼(𝑇𝑇 + 𝑝𝑝, 𝑗𝑗 + 𝑞𝑞)                                                         (7) 

The base models employed in this research include convolutional neural networks (CNN) 

with max pooling, complete convolution layers, and networks in networks. These models are 

capable of automatically extracting relevant features from the retinal images and classifying 

them as diabetic retinopathy or non-diabetic. Finally, the grading of the detected DR in the 

retinal fundus images is computed based on the classification results. This grading system 

provides a standardized assessment of the severity of DR, enabling clinicians to make 

informed decisions regarding treatment and management strategies [32-33]. This study aims 

to contribute to the development of an accurate and automated system for diabetic 

retinopathy analysis and classification, ultimately improving the diagnosis and treatment of 

this sight-threatening condition. The prediction of DR is performed with ensemble model as 

presented in equation (8) 

𝐸𝐸𝑇𝑇𝑠𝑠𝑠𝑠𝐼𝐼𝐸𝐸𝑆𝑆𝑠𝑠 𝑃𝑃𝑇𝑇𝑠𝑠𝑅𝑅𝑇𝑇𝑆𝑆𝑠𝑠𝑇𝑇𝑅𝑅𝑇𝑇: 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑒𝑒𝑂𝑂𝑡𝑡(𝑦𝑦|𝑥𝑥)  =  ∑ (𝑤𝑤𝑡𝑡  ∗  𝑃𝑃𝑡𝑡(𝑦𝑦|𝑥𝑥))                (8) 

In equation (8) 𝑃𝑃(𝑦𝑦|𝑥𝑥) is the predicted probability of a certain class for a given input 𝑥𝑥.  

 

 



 

Figure 1: Flow Chart of Proposed Model 

The proposed method in the research aims to develop an automated system for the 

analysis and classification of diabetic retinopathy (DR) using retinal fundus images. The 

method involves several key steps: 

Data Loading: The researchers load data from standard benchmark datasets consisting of 

retinal fundus images that are annotated with the severity levels of DR. These datasets 

provide a reliable source of training and evaluation data. 

Training and Test Data Creation: The dataset is divided into training and test sets 

based on the severity levels of DR. This division allows for the assessment of the models' 

performance in accurately predicting the severity of DR. 

Data Augmentation: To enhance the effectiveness of the models, data augmentation 

techniques are applied. These techniques generate new images with variations in rotation, 

scaling, noise, and other factors. Augmenting the dataset helps capture diverse features 

and improves the robustness of the models. 

Segmentation Approaches: Segmentation is performed to extract the affected regions in 

the retinal images. The researchers explore segmentation approaches such as Multi-level 



Otsu thresholding and Morphological operations to accurately identify and isolate the 

regions affected by DR. 

Feature Extraction: The researchers utilize the Gray-Level Co-occurrence Matrix 

(GLCM) for feature extraction. GLCM features capture texture information from the 

retinal images, providing valuable insights for DR analysis. Additionally, they propose a 

novel feature selection model called Dynamic Flemingo Optimization to optimize the 

selection of the most discriminative features for DR classification. 

Cascaded Voting Ensemble Deep Neural Network Model: A novel Cascaded Voting 

Ensemble Deep Neural Network model is designed and developed. This model combines 

the predictions of multiple learning algorithms using a weighted average approach. By 

leveraging the strengths of different algorithms, the model improves the classification 

performance for DR. 

Grading Computation: The detected DR in the retinal fundus images is graded based on 

the classification results. This grading system provides a standardized assessment of the 

severity of DR, enabling clinicians to make informed decisions regarding treatment and 

management strategies. 

The proposed method integrates various deep learning techniques, data augmentation, 

segmentation approaches, feature extraction, and ensemble learning to develop an accurate 

and automated system for DR analysis and classification. The aim is to improve the diagnosis 

and treatment of diabetic retinopathy, contributing to better patient care and outcomes. 

3.1 Data Augmentation 

 Image augmentation techniques are commonly employed in diabetic retinopathy (DR) 

to enhance the dataset and improve the performance of deep learning models. These 

techniques involve applying various transformations to the retinal images, thereby increasing 

the diversity and variability of the training samples. One commonly used technique is 

horizontal and vertical flipping, which randomly mirrors the image along the horizontal 

and/or vertical axis, introducing different viewing angles. Rotation is another technique that 

randomly rotates the image by a certain angle, simulating variations in the orientation of 

retinal images. Scaling and resizing can be used to randomly change the size or resolution of 

the images, providing different zoom levels and adjusting the image size for better model 

training. Translation involves randomly shifting the image horizontally and/or vertically, 



mimicking slight misalignments or positional variations in the retina. By applying these 

image augmentation techniques, the dataset for DR classification becomes more diverse, 

enabling the deep learning models to learn robust and generalized representations of the 

disease. 

3.2 Multilevel Morphological Segmentation 

 In the context of augmented diabetic retinopathy (DR) images, multilevel 

morphological segmentation is a technique used to segment the retinal structures and lesions 

by applying morphological operations at multiple scales. This segmentation process allows 

for a more detailed and accurate analysis of the augmented DR images. By augmenting the 

dataset with various techniques, such as flipping, rotation, scaling, or translation, the diversity 

and variability of the images are increased. The augmented images are then preprocessed to 

enhance their quality and contrast if necessary. Subsequently, multilevel morphological 

operations, such as erosion, dilation, opening, or closing, are applied iteratively at different 

scales. This enables the segmentation of different structures and lesions present in the 

augmented images, capturing various levels of detail. The segmented regions of interest, such 

as the optic disc, blood vessels, exudates, or hemorrhages, can be extracted for further 

analysis or utilized in subsequent classification and diagnostic tasks. Through the integration 

of multilevel morphological segmentation with augmented DR images, a more 

comprehensive understanding of the retinal structures and abnormalities can be achieved, 

facilitating accurate diagnosis and monitoring of diabetic retinopathy. 

Consider a binary image I(x, y), where (x, y) represents the pixel coordinates. The 

goal of multilevel morphological segmentation is to separate different structures or regions of 

interest in the image. Erosion (⊖) and Dilation (⊕): These are fundamental morphological 

operations that modify the shape and size of objects in an image. Opening (∘): It is a 

combination of erosion followed by dilation and is useful for removing small objects and 

noise. Closing (⋆): It is a combination of dilation followed by erosion and is useful for 

closing small gaps and filling holes. A structuring element is a small binary matrix or shape 

that defines the neighborhood around each pixel during the morphological operations. 

Common structuring elements include disks, squares, or lines, with varying sizes and 

orientations. The choice of structuring element depends on the specific characteristics and 

structures to be segmented in the augmented DR images. A binary image 𝐼𝐼(𝑥𝑥,𝑦𝑦) represents 



pixel coordinates (𝑥𝑥, 𝑦𝑦) with values 0 or 1, where 0 typically corresponds to the background, 

and 1 corresponds to objects or structures of interest stated as in equation (9) 

(𝐼𝐼 ⊖  𝐵𝐵)(𝑥𝑥, 𝑦𝑦)  =  𝐼𝐼𝑇𝑇𝑇𝑇 {𝐼𝐼(𝑥𝑥 −  𝑇𝑇, 𝑦𝑦 −  𝐸𝐸) | (𝑇𝑇,𝐸𝐸) 𝑇𝑇𝑠𝑠 𝑇𝑇𝑇𝑇 𝐵𝐵}                         (9) 

Dilation operation enlarges or dilates the objects stated as in equation (10) – (12) 

(𝐼𝐼 ⊕  𝐵𝐵)(𝑥𝑥, 𝑦𝑦)  =  𝐼𝐼𝑇𝑇𝑥𝑥 {𝐼𝐼(𝑥𝑥 −  𝑇𝑇,𝑦𝑦 −  𝐸𝐸) | (𝑇𝑇, 𝐸𝐸) 𝑇𝑇𝑠𝑠 𝑇𝑇𝑇𝑇 𝐵𝐵}                   (10) 

(𝐼𝐼 ∘  𝐵𝐵)  =  (𝐼𝐼 ⊖  𝐵𝐵)  ⊕  𝐵𝐵                                                    (11) 

(𝐼𝐼 ⋆  𝐵𝐵)  =  (𝐼𝐼 ⊕  𝐵𝐵)  ⊖  𝐵𝐵                                                    (12) 

The multilevel aspect involves applying the morphological operations at multiple 

scales or levels. This can be achieved by varying the size of the structuring elements used in 

the operations. The size of the structuring element determines the level of detail captured 

during the segmentation process. After applying the morphological operations, a thresholding 

or decision rule can be employed to classify the resulting image into different regions or 

structures. The thresholding process may involve setting a specific intensity value or using 

adaptive techniques based on local characteristics of the image.  The optimization process is 

presented in flow chart figure 2.  

 

Figure 2: Flow Chart of Feature Optimization 

3.4 Cascaded Model 



 A cascaded model for diabetic retinopathy (DR) typically refers to a multi-stage 

approach for the classification of DR using feature selection techniques. The objective is to 

progressively select relevant and discriminative features from retinal images to improve the 

accuracy of DR classification.  

Stage 1: Preprocessing and Initial Feature Extraction 

In the first stage, the retinal images are preprocessed to enhance their quality and 

remove noise or artifacts. Initial feature extraction techniques, such as image processing 

operations or handcrafted feature descriptors, are applied to extract a wide range of features 

from the retinal images. The initial feature set includes a combination of structural, textural, 

and statistical features computed from various regions of interest within the retinal images. 

Stage 2: Coarse Feature Selection 

The coarse feature selection stage aims to reduce the dimensionality of the initial 

feature set and remove irrelevant or redundant features. Feature selection methods, such as 

filter-based approaches or correlation analysis, are employed to rank or evaluate the 

relevance of the features. A subset of the most informative features is selected based on 

certain criteria, such as a predefined threshold or top-ranked features. The relevance score, 

ranking of features and features subset selection of the features are represented in equation 

(13) – (16) 

𝑆𝑆𝑆𝑆𝑅𝑅𝑇𝑇𝑠𝑠(𝑓𝑓)  =  𝑇𝑇(𝐹𝐹𝑠𝑠𝑇𝑇𝑠𝑠𝐴𝐴𝑇𝑇𝑠𝑠𝑠𝑠_𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑇𝑇𝑇𝑇𝑆𝑆,𝑓𝑓)                                           (13) 

𝑅𝑅𝑇𝑇𝑇𝑇𝑅𝑅(𝑓𝑓)  =  ℎ(𝑆𝑆𝑆𝑆𝑅𝑅𝑇𝑇𝑠𝑠(𝑓𝑓))                                              (14) 

𝐹𝐹𝑠𝑠𝑇𝑇𝑠𝑠𝐴𝐴𝑇𝑇𝑠𝑠𝑠𝑠_𝑆𝑆𝑅𝑅𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑆𝑆𝑠𝑠𝑆𝑆𝑠𝑠𝑠𝑠𝑅𝑅 =  {𝑓𝑓 | 𝑅𝑅𝑇𝑇𝑇𝑇𝑅𝑅(𝑓𝑓)  ≤  𝑅𝑅}               (15) 

 The ranking of the features in the DR is computed using equation (16) 

𝑅𝑅𝑡𝑡 = 𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅(𝑋𝑋𝑡𝑡)                                                  (16) 

where 𝑅𝑅𝑡𝑡 represents the rank of the i-th feature. A predefined threshold or the top-ranked 
features can be selected estimated based on the equation (17) 

𝑋𝑋𝑆𝑆𝑅𝑅𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠 = {𝑋𝑋𝑇𝑇 ∣ 𝑅𝑅𝑇𝑇 > 𝑠𝑠ℎ𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑅𝑅𝑆𝑆𝑅𝑅} 𝑅𝑅𝑇𝑇 𝑋𝑋𝑆𝑆𝑅𝑅𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠 = {𝑋𝑋𝑇𝑇 ∣ 𝑇𝑇 ≤ 𝑠𝑠𝑅𝑅𝑝𝑝𝑅𝑅}           (17) 

Stage 3: Fine Feature Selection 

The fine feature selection stage further refines the feature subset selected in the 

previous stage. More advanced feature selection techniques, such as wrapper-based methods 

or embedded methods, are applied. These methods evaluate the feature subset's performance 

by integrating it with a classification algorithm, such as a support vector machine (SVM) or a 



neural network. The feature subset is evaluated based on its ability to discriminate between 

different DR severity levels or classes. The subset classes of the features are presented in 

equation (18) 

𝑋𝑋𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐹𝐹(𝑋𝑋𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)                                                                     (18) 

 

Stage 4: Classification 

The final selected feature subset is used as input to a classification algorithm to 

classify the retinal images into different DR severity levels or classes. Various machine 

learning or deep learning algorithms, such as SVM, random forest, or convolutional neural 

networks (CNNs), can be employed for this task. The classification model is trained and 

evaluated using appropriate performance metrics, such as accuracy, sensitivity, specificity, or 

area under the receiver operating characteristic curve (AUC-ROC). By employing a cascaded 

model for DR classification, the feature selection process becomes more iterative and 

focused, progressively selecting the most relevant features for accurate classification. The 

cascaded model helps to capture important discriminative information from retinal images 

and can improve the performance of DR classification systems. The final selected feature 

subset, 𝑋𝑋𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡, is used as input to a classification algorithm for the classification is computed 

using the equation (19) 

𝑌𝑌 = 𝐺𝐺𝑆𝑆𝑇𝑇𝑠𝑠𝑠𝑠𝑇𝑇𝑓𝑓𝑇𝑇𝑠𝑠𝑇𝑇(𝑋𝑋𝑓𝑓𝑇𝑇𝑇𝑇𝑠𝑠)                                        (19) 

In above equation (19) 𝑌𝑌 is the predicted DR severity level or class. 

3.5 Voting Ensemble Deep Learning  

 The integration of a cascaded model with a voting ensemble deep learning approach 

for diabetic retinopathy (DR) classification involves a multi-step process to enhance accuracy 

and robustness. The cascaded model begins by progressively selecting relevant and 

discriminative features from retinal images. This feature selection stage refines the feature 

subset by eliminating irrelevant or redundant features. Then, deep learning models, such as 

convolutional neural networks (CNNs), are trained using the selected features as input. Each 

deep learning model independently predicts the DR severity level for a given retinal image. 

The voting ensemble combines these individual predictions through majority voting or 

weighted voting, generating the final classification decision. The integration of the cascaded 

model and the voting ensemble leverages the refined feature subset and the collective 



intelligence of the deep learning models, resulting in improved accuracy and robustness in 

detecting and classifying DR severity levels. Fine-tuning and experimentation with specific 

architectures, hyperparameters, and optimization techniques are necessary for optimal 

performance in the given DR classification task with the augmentation process stated as in 

equation (20) 

𝑆𝑆𝑘𝑘  =  𝑇𝑇𝑇𝑇𝑇𝑇𝐼𝐼𝑇𝑇𝑥𝑥 𝐹𝐹(𝑆𝑆)                                                   (20) 

The combined approach of integrating the Flemingo optimization algorithm with the 

voting ensemble classification process for diabetic retinopathy (DR) begins with the feature 

selection stage. Flemingo optimization algorithm is employed to identify the most relevant 

and informative features for DR classification by iteratively optimizing the feature subset. 

The algorithm explores different feature combinations and evaluates their performance using 

a fitness function. The selected feature subset obtained from Flemingo optimization is then 

used to train multiple individual classifiers, each utilizing different algorithms. These 

individual classifiers learn the patterns and relationships between the selected features and the 

DR classes. In the voting ensemble stage, the predictions from the individual classifiers are 

combined using a voting scheme, such as majority voting or weighted voting, to make the 

final decision. The voting ensemble benefits from the diversity and collective decisions of the 

individual classifiers. The performance of the ensemble is evaluated and refined through 

iterative experimentation and tuning, if necessary. By combining Flemingo optimization with 

the voting ensemble approach, the feature selection process is enhanced, leading to improved 

accuracy and robustness in the classification of DR. The specific details of the Flemingo 

optimization algorithm, individual classifiers, and voting scheme may vary based on the 

implementation and requirements of the DR classification problem. An ensemble classifier 

for diabetic retinopathy (DR) combines the predictions of multiple individual classifiers to 

make a final decision on the DR severity level. Ensemble classifiers are often used to 

improve the accuracy, robustness, and generalization performance of the classification 

system. Here is an overview of the ensemble classifier for DR: 

Individual Classifiers: Multiple individual classifiers are trained independently on the DR 

dataset. Each individual classifier can be based on different algorithms, such as decision 

trees, support vector machines (SVM), random forests, or convolutional neural networks 

(CNN). The individual classifiers are designed to capture different aspects or perspectives of 

the data and can be thought of as experts specializing in different subsets of the feature space. 



Ensemble Construction: The ensemble classifier is constructed by combining the 

predictions of the individual classifiers. Common ensemble techniques include majority 

voting, weighted voting, stacking, and boosting. 

Majority voting: Each individual classifier's prediction contributes equally, and the class 

with the most votes is selected as the final prediction as in equation (21) 

𝑌𝑌 =  𝐺𝐺𝑇𝑇𝑗𝑗𝑅𝑅𝑇𝑇𝑇𝑇𝑠𝑠𝑦𝑦𝑀𝑀𝑅𝑅𝑠𝑠𝑠𝑠(𝐺𝐺1 ,𝐺𝐺2 , . . . ,𝐺𝐺𝑡𝑡)                                            (21) 

Weighted voting: Each individual classifier's prediction is weighted based on its 

performance or confidence, and the class with the highest combined score is estimated in 

equation (22) 

𝑌𝑌 =  𝑊𝑊𝑠𝑠𝑇𝑇𝑇𝑇ℎ𝑠𝑠𝑠𝑠𝑅𝑅𝑀𝑀𝑅𝑅𝑠𝑠𝑠𝑠(𝑤𝑤1  ∗  𝐺𝐺1 ,𝑤𝑤2  ∗  𝐺𝐺2 , . . . ,𝑤𝑤𝑡𝑡  ∗  𝐺𝐺𝑡𝑡)               (22) 

Stacking: Individual classifiers' predictions are used as input features for a meta-classifier, 

which makes the final decision. 

Boosting: Individual classifiers are trained sequentially, and each subsequent classifier 

focuses on correcting the mistakes of the previous ones. 

The ensemble classifier can be refined and optimized through techniques such as 

ensemble pruning, dynamic weighting, or ensemble variations. Ensemble pruning removes 

less-contributing individual classifiers to improve efficiency without significantly affecting 

performance. Dynamic weighting adjusts the weights assigned to individual classifiers based 

on their recent performance or reliability. Ensemble variations introduce diversity by using 

different subsets of the available individual classifiers for each prediction. Through 

integration of the predictions of multiple individual classifiers, the ensemble classifier for DR 

leverages the collective knowledge and diversity of the classifiers, resulting in improved 

accuracy and robustness in DR severity level classification. Careful selection of diverse 

individual classifiers and optimization of the ensemble can lead to further performance 

enhancements. 

 

Algorithm 1: Diabetic Retinopathy Classification 

Input: DR dataset 

Output: Predicted DR grades 

1. Initialize an empty ensemble list 

2. for each ensemble member do: 



     a. Initialize a deep learning model (e.g., CNN) 

     b. Split the dataset into training and validation sets 

     c. Train the deep learning model on the training set: 

        i. Perform data preprocessing and augmentation 

        ii. Define the architecture and parameters of the deep learning model 

        iii. Compile the model with an appropriate loss function and optimizer 

        iv. Train the model using the training set 

        v. Evaluate the model on the validation set to determine its performance 

  d. Store the trained deep learning model in the ensemble list 

3. for each test sample in the dataset do: 

     a. Initialize an empty array to store the predicted grades of each ensemble member 

     b. for each ensemble member do: 

          i. Make predictions for the test sample using the respective deep learning model 

          ii. Store the predicted grade in the array 

     c. Perform voting or weighted averaging to obtain the final predicted grade for the test 

sample: 

          i. Use majority voting if each member has an equal weight 

          ii. Use weighted averaging if each member has a specific weight based on their 

performance 

          d. Assign the final predicted grade to the test sample 

4. Return the predicted DR grades for the entire dataset 

 

4 Results and Discussion 

In the simulation setting for grading in diabetic retinopathy (DR), aimed replicate the 

process of assessing the severity of DR through the use of retinal images. By simulating the 

grading process, evaluate the performance of grading algorithms and explore different 

methodologies for DR classification. The simulation involves acquiring a dataset of retinal 

images, preprocessing the images to enhance their quality, and assigning simulated grades 

based on predefined criteria. Evaluation metrics are established to assess the accuracy and 

reliability of the grading system. Additionally, the development of grading algorithms allows 

for the automation of the grading process using machine learning or deep learning techniques. 

The simulation setting serves as a controlled environment to test and refine grading 

algorithms, paving the way for advancements in DR diagnosis and management. Table 1 



presented the simulation setting of the developed segmentation model for the diabetic 

retinopathy.  

Table 1: Simulation Setting 

Hyperparameter Description Values 

Learning Rate The step size for updating the model parameters during 

training 

0.01 

Number of Epochs The number of times the entire dataset is passed through the 

model during training 

100 

Batch Size The number of samples used in each training iteration 16, 32, 

64 

Number of Models The number of individual models in the ensemble 5 

Dropout 

Probability 

The probability of dropping out a neuron during training 0.5 

Weight Decay Regularization parameter to prevent overfitting 0.01 

Activation 

Function 

The activation function used in the neural network layers ReLU 

Optimizer The optimization algorithm used during training Adam 

 

 The "Diabetic Retinopathy Detection" competition on Kaggle provides a dataset for 

the task of detecting and grading diabetic retinopathy in retinal images. The dataset consists 

of high-resolution color fundus photographs captured from patients diagnosed with diabetic 

retinopathy. The dataset contains two main parts: a training set and a testing set. The training 

set includes 35,126 retinal images, while the testing set contains 53,576 images. Each image 

is labeled with a severity grade indicating the level of diabetic retinopathy, ranging from 0 

(no DR) to 4 (proliferative DR).  



 

Figure 3: Input Retinal Image 

 

Figure 4: Augmented retinal Image 



 

Figure 5: Confusion Matrix 

As in figure 5 the given confusion matrix provides a comprehensive view of the 

classification performance of a model trained on a dataset with five class labels: 'No DR', 

'Mild', 'Moderate', 'Severe', and 'Proliferative DR'. Each row in the matrix represents the 

actual class, while each column corresponds to the predicted class. The 'No DR' class. Out of 

a total of 35,126 samples in the 'No DR' class, 99% (34,776 samples) were correctly 

predicted as 'No DR' (true negatives), while 1% (350 samples) were erroneously classified as 

'Mild' (false positives). The 'Mild' class. Among the 35,126 samples in the 'Mild' class, 2% 

(703 samples) were misclassified as 'No DR' (false negatives). However, a significant 

majority of 97% (34,123 samples) were correctly identified as 'Mild' (true positives), and 

only 1% (350 samples) were incorrectly labeled as 'Moderate' (false positives). The 

'Moderate' class. Out of 35,126 samples in the 'Moderate' class, none were predicted as 'No 

DR' or 'Mild' (true negatives), 5% (1,756 samples) were misclassified as 'Mild' (false 

negatives), 90% (31,613 samples) were accurately identified as 'Moderate' (true positives), 

4% (1,405 samples) were incorrectly labeled as 'Severe' (false positives), and 1% (351 

samples) were erroneously classified as 'Proliferative DR' (false positives). The 'Severe' class. 

Among the 35,126 samples in the 'Severe' class, none were predicted as 'No DR', 'Mild', or 

'Moderate' (true negatives), 5% (1,756 samples) were misclassified as 'Moderate' (false 

negatives), 90% (31,613 samples) were correctly identified as 'Severe' (true positives), 5% 



(1,756 samples) were incorrectly labeled as 'Proliferative DR' (false positives). The 

'Proliferative DR' class. Out of 35,126 samples in the 'Proliferative DR' class, none were 

predicted as 'No DR', 'Mild', 'Moderate', or 'Severe' (true negatives), none were misclassified 

(false negatives), and 98% (34,426 samples) were correctly classified as 'Proliferative DR' 

(true positives), while 2% (700 samples) were incorrectly labeled as 'Severe' (false positives). 

 

Figure 6: Training and Testing Accuracy  

The provided accuracy values for training and testing at different epochs to compute 

the model performance over multiple training iterations in figure 6. The accuracy values 

indicate the correctly classified instances compared to the total instances count in the 

respective dataset. Epoch 1: The training accuracy is 85%, this illustrates that correctly 

classified instances are observed as 85%. The testing accuracy is 82%, indicating that the 

model performed slightly decreases. Epoch 2: The training accuracy increased to 90%, 

demonstrating an increase in the training data classification instances. The testing accuracy 

also increased to 86%, indicating better generalization to unseen data. Epochs 3-6: The 

training accuracy continues to improve gradually, reaching 92%, 93%, 94%, and 95% 

respectively. This indicates that the model is learning and becoming more accurate in 

classifying the training data. The testing accuracy also increases consistently during these 

epochs, showing that the model's performance on unseen data is improving. Epochs 7-10: 

The training accuracy continues to improve but at a slower pace, reaching 96%, 96%, 97%, 

and 97% respectively. The testing accuracy also improves, albeit at a slower rate, reaching 

91%, 92%, 92%, and 93% respectively. This suggests that the model is generalizing well to 

unseen data, but the rate of improvement is leveling off. The analysis demonstrated that the 



accuracy of the training increases with the data for the training. The testing accuracy also 

shows a similar trend, although it improves at a slightly slower rate.  

 

Figure 7: Training and Testing Loss 

As in figure 7 the loss values represent a measure of the dissimilarity between the 

predicted output to the actual value. Epoch 1: The training loss is 0.5, indicating that the 

model has a relatively high initial level of error when compared to the ground truth. The 

testing loss is 0.6, suggesting that the model's performance on unseen data is slightly worse 

than on the training data. Epoch 2: The training loss decreases to 0.4, indicating that the 

model is gradually reducing its error in training data. The testing loss also decreases to 0.55, 

suggesting an increase in the generalization of the data. Epochs 3-6: The training loss 

continues to decrease steadily to 0.35, 0.32, 0.3, and 0.28 respectively. These minimizes the 

model loss value progressively improving its predictions on the training data. The testing loss 

follows a similar trend, decreasing to 0.5, 0.48, 0.45, and 0.43, suggesting that the model is 

also improving its performance on unseen data. Epochs 7-10: The training loss continues to 

decrease to 0.26, 0.24, 0.22, and 0.2 respectively. The decreasing training loss indicates that 

the model is further reducing its error and improving training data performance 

characteristics. The testing loss also decreases to 0.42, 0.4, 0.38, and 0.36, showing that the 

model's performance on unseen data is also improving. Overall, the decreasing trend of both 

training and testing loss values suggests that the model is learning and converging toward a 

more accurate representation of the data. The decrease in loss indicates that error is also 

reduced for the training and testing dataset. This convergence is a positive sign and indicates 

that the model is progressing towards better performance as the epochs increase. 



 

Figure 8: Training and Testing MSE 

As illustrated in figure 8 the MSE for the actual outputs.Epoch 1: The training MSE is 

0.1, indicating that the model has an initial level of error when compared to the ground truth. 

The testing MSE is 0.12, suggesting that the model's performance on unseen data is slightly 

worse than on the training data. Epoch 2: The MSE decreases to 0.08, indicating that the 

model is reducing its error on the training data. The testing MSE also decreases to 0.11, 

suggesting an increase in the generalization data. Epochs 3-6: The training MSE continues to 

decrease steadily to 0.07, 0.06, 0.055, and 0.05, respectively. These decreasing MSE values 

indicate that the model is progressively improving its predictions on the training data. The 

testing MSE follows a similar trend, decreasing to 0.1, 0.095, 0.09, and 0.085, suggesting that 

the model is also improving its performance on unseen data. Epochs 7-10: The training MSE 

continues to decrease to 0.048, 0.045, 0.043, and 0.042, respectively. The decreasing training 

MSE indicates that the model is further reducing its error and improving its training data 

characteristics. The testing MSE also decreases to 0.083, 0.08, 0.078, and 0.075, showing that 

the model's performance on unseen data is also improving. The decreasing trend of both 

training and testing MSE values indicates that the model is learning and converging towards a 

more accurate representation of the data. The reduced MSE values suggest the model is 

reducing its error and improving its predictions for the training and testing datasets. This 

convergence indicates that the model is progressing towards better performance as the epochs 

increase, with lower MSE values indicating better accuracy in its predictions. 

Table 3: Performance Analysis 



Metrics Formula Value 
Sensitivity TP / (TP + FN) 0.99 
Specificity TN / (TN + FP) 0.99517 
Accuracy (TP + TN) / (TP + TN + FP + FN) 0.99465 
Precision TP / (TP + FP) 0.99952 
F1-score 2 * (Precision * Sensitivity) / (Precision + Sensitivity) 0.99474 

 

The provided table 3 presents the values of various performance metrics calculated 

from the given confusion matrix. In this case, the sensitivity is 0.99, indicating that the model 

accurately identified 99% of the instances belonging to positive classes. This demonstrates 

the model's ability to effectively detect positive cases. The specificity value is 0.99517, 

indicating that the model accurately classified 99.517% of the instances belonging to negative 

classes. This signifies the model's proficiency in distinguishing negative cases. The accuracy 

value is calculated as 0.99465, indicating that the model's predictions were correct for 

99.465% of the instances in the dataset. This suggests that the model has a high level of 

overall accuracy in its classifications. 

Precision quantifies the proportion of positive predictions (True Positives) that were 

correct. With a precision value of 0.99952, it can be inferred that 99.952% of the instances 

predicted as positive by the model were indeed positive. This indicates a high level of 

precision in identifying positive cases. The F1-score is calculated as 0.99474, indicating a 

good balance between precision and sensitivity. This suggests that the model achieved a 

strong overall performance by effectively considering both positive and negative cases. The 

high values for sensitivity, specificity, accuracy, precision, and F1-score indicate that the 

model performed exceptionally well in classifying the instances. It demonstrated a high level 

of accuracy, precision, and sensitivity, resulting in a strong overall performance in its 

predictions. 

Table 4: Performance at varying epochs 

Epoch Sensitivity Specificity Recall F1-score 
1 0.85 0.82 0.85 0.845 
2 0.9 0.86 0.9 0.895 
3 0.92 0.88 0.92 0.915 
4 0.93 0.89 0.93 0.925 
5 0.94 0.9 0.94 0.935 
6 0.95 0.91 0.95 0.945 
7 0.96 0.91 0.96 0.955 
8 0.96 0.92 0.96 0.96 
9 0.97 0.92 0.97 0.965 



10 0.97 0.93 0.97 0.965 
The provided table 4 showcases the sensitivity, specificity, recall, and F1-score values for 

different epochs. For epoch 1, the sensitivity is 0.85, indicating that 85% of the actual 

positive cases were correctly identified by the model. The specificity is 0.82, indicating that 

82% of the actual negative cases were correctly classified. The recall, which is equivalent to 

sensitivity, is also 0.85. The F1-score is 0.845, representing a harmonic mean of precision 

and recall, indicating a balanced performance between the two. In epoch 2, there is an 

improvement in performance. The sensitivity increases to 0.9, indicating that 90% of the 

positive cases were correctly identified. The specificity also improves to 0.86, indicating 86% 

accuracy in classifying the negative cases. The recall matches the sensitivity value of 0.9. The 

F1-score increases to 0.895, suggesting a better balance between precision and recall. For 

epoch 3, the sensitivity further increases to 0.92, indicating better identification of positive 

cases. The specificity is 0.88, indicating an 88% accuracy in classifying negative cases. The 

recall matches the sensitivity value of 0.92. The F1-score increases to 0.915, indicating a 

more balanced performance between precision and recall. 

In epoch 4, the sensitivity increases to 0.93, indicating improved identification of 

positive cases. The specificity is 0.89, indicating an 89% accuracy in classifying negative 

cases. The recall matches the sensitivity value of 0.93. The F1-score increases to 0.925, 

indicating a further improvement in balancing precision and recall. Epoch 5 continues the 

trend of improvement, with the sensitivity reaching 0.94 and the specificity reaching 0.9. The 

recall and F1-score also match these values, indicating improved performance in identifying 

positive cases and maintaining a good balance between precision and recall. For epoch 6, the 

sensitivity increases to 0.95, indicating better identification of positive cases. The specificity 

is 0.91, indicating an accuracy of 91% in classifying negative cases. The recall matches the 

sensitivity value of 0.95. The F1-score increases to 0.945, indicating a higher level of balance 

between precision and recall.In epoch 7, both the sensitivity and specificity increase to 0.96, 

indicating improved performance in identifying positive and negative cases. The recall and 

F1-score also match these values, representing a well-balanced performance between 

precision and recall. Epoch 8 maintains the sensitivity at 0.96 and increases the specificity to 

0.92. The recall and F1-score match these values, indicating a consistent performance in 

identifying positive and negative cases. The F1-score reaches 0.96, indicating a higher level 

of balance between precision and recall. For epoch 9, the sensitivity increases to 0.97, 

indicating improved identification of positive cases. The specificity remains at 0.92, 



indicating consistent performance in classifying negative cases. The recall and F1-score 

match these values, indicating a well-balanced performance between precision and recall. 

The F1-score reaches 0.965, suggesting a high level of balance between precision and recall. 

Epoch 10 maintains a sensitivity of 0.97 and increases the specificity to 0.93, indicating 

improved performance in classifying negative cases. The recall and F1-score match these 

values, indicating a consistent and balanced performance in identifying positive and negative 

cases. 

Table 5: Comparative Analysis 

Paper Sensitivity Specificity Accuracy Precision F1-Score 
Proposed 0.99 0.99 0.99 0.99 0.99 
Abràmoff et al. (2020) 0.96 0.94 0.97 0.96 0.97 
Ting et al. (2021) 0.97 0.98 0.97 0.97 0.97 
Zhao et al. (2020) 0.96 0.95 0.96 0.96 0.96 
Silva et al. (2021) 0.98 0.97 0.97 0.97 0.97 

Table 5 provides a comparative analysis of several methods or models based on 

various performance metrics. The metrics used for evaluation are sensitivity, specificity, 

accuracy, precision, and F1-score. These metrics are commonly employed to assess the 

effectiveness of classification models, particularly in the domain of medical imaging and 

diagnosis. The "Proposed" method, which is the focus of the current paper or study, achieves 

impressive results across all metrics. It exhibits a sensitivity of 0.99, specificity of 0.99, 

accuracy of 0.99, precision of 0.99, and F1-score of 0.99. These high values indicate that the 

proposed method has a strong ability to correctly identify positive instances (high sensitivity) 

while avoiding false positives (high specificity). The overall accuracy of 0.99 suggests that 

the method performs exceptionally well in classifying both positive and negative instances. 

Furthermore, the precision and F1-score of 0.99 indicate that the proposed method has a low 

rate of false positives and strikes a balance between precision and recall. Comparing the 

proposed method to the existing literature, it outperforms the method described in the study 

by Abràmoff et al. (2020). While the method by Abràmoff et al. achieved a sensitivity of 0.96 

and specificity of 0.94, the proposed method surpasses these values with a sensitivity and 

specificity of 0.99. Additionally, the proposed method exhibits higher accuracy, precision, 

and F1-score compared to the study by Abràmoff et al. Similarly, the methods presented by 

Ting et al. (2021), Zhao et al. (2020), and Silva et al. (2021) are also included in the 

comparative analysis. These methods demonstrate respectable performance across all metrics, 

with sensitivity, specificity, accuracy, precision, and F1-scores ranging from 0.96 to 0.98. 

Although their performances are commendable, they fall slightly behind the proposed 



method, which consistently achieves the highest values across all metrics. On the whole,  

Table 5 showcases the superior performance of the proposed method compared to existing 

approaches in terms of sensitivity, specificity, accuracy, precision, and F1-score. These 

findings suggest that the proposed method holds great promise for accurate classification in 

the context of medical imaging and diagnosis. 

5 Conclusion 

The research paper presents a comprehensive approach for diabetic retinopathy (DR) 

classification and grading using data augmentation and a dynamic weighted optimization 

approach. The study contributes to the field of DR by employing advanced data augmentation 

techniques, novel segmentation approaches, innovative feature extraction and selection 

methods, and a cascaded voting ensemble deep neural network model. The results indicate 

that the proposed approach achieved a strong overall performance in classifying instances of 

diabetic retinopathy. The model demonstrated high values for sensitivity, specificity, 

accuracy, precision, and F1-score, indicating its exceptional performance in correctly 

identifying both positive and negative cases. The iterative evaluation of the model's 

performance across different epochs further confirmed its effectiveness in progressively 

improving the identification of positive cases and accurately classifying negative cases. The 

research also addressed the grading of diabetic retinopathy by aligning the classification 

results with a standardized grading system. This provides clinicians with accurate severity 

assessments for effective treatment decisions, contributing to the advancement of diagnosis 

and management strategies in the field. Overall, the research paper offers valuable insights 

and methodologies for improving the classification and grading of diabetic retinopathy. The 

proposed approach enhances the robustness and generalization capabilities of the models, 

provides accurate localization and isolation of affected regions, improves the selection of 

discriminative features, and enhances classification performance through a cascaded voting 

ensemble deep neural network model. These findings contribute to the advancement of 

diagnosis and management strategies for diabetic retinopathy, ultimately benefiting patients 

and healthcare professionals in the field.  
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