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SUMMARY 
 
CRISPR-Cas9 genome editing has transformed biomedical research and the development of 

therapies, yet the challenge of unintended off-target effects remains a significant obstacle to its 
clinical use. In this study, we present a new deep learning model that combines Capsule Networks 
with Transformer blocks, bidirectional LSTM layers, and CNNs. The model is further strengthened 
by incorporating k-mer encoded sequence features and biological rule checks to predict CRISPR-
Cas9 off-target activity with greater accuracy. It processes guide and off-target DNA sequences 
through a hybrid pipeline, which includes convolution, temporal modelling, attention-based 
representation learning, and spatial hierarchy encoding using capsule layers. At the same time, the 
model extracts and analyses numerical features, such as mismatch counts, GC content, and PAM 
motif patterns. To improve reliability, we introduce a biological constraint layer that filters 
predictions based on well-established domain knowledge. The final predictions result from 
integrating these various feature representations. Our results show that this biologically-informed 
architecture significantly enhances both sensitivity and specificity in off-target prediction, indicating 
its potential to improve the safety and design of CRISPR experiments. 
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1. INTRODUCTION 
 
CRISPR-Cas9, short for Clustered Regularly Interspaced Short Palindromic Repeats and 

CRISPR-associated protein 9, is a powerful gene-editing tool derived from a bacterial immune 
response. It works by guiding the Cas9 enzyme to a specific DNA sequence using a matching RNA 
guide, enabling precise double-strand breaks at targeted genomic locations. Once the DNA is cut, 
the cell’s natural repair processes are activated. These repair mechanisms often introduce mutations 
that can disrupt the function of the targeted gene, effectively knocking it out. Alternatively, if a 
DNA template is provided during repair, the system can be used to insert or replace genetic material 
at the break site, allowing for accurate gene editing. 
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CRISPR holds immense potential with applications spanning various fields. It can be 
leveraged to investigate gene functions across species and transform agriculture by developing high-
yield crops that are resistant to diseases and weeds. In the medical field, it offers promising avenues 
for treating genetic disorders. Despite its revolutionary capabilities, CRISPR faces significant 
challenges—most notably, Off-Target effects. These occur when the single guide RNA (sgRNA) 
binds to unintended DNA sites with minor mismatches, still leading to unintended double-strand 
breaks. Detecting these Off-Target sites using experimental approaches is often expensive and time-
intensive. This challenge opens the door for computational models, which can provide efficient, 
accurate, and economical alternatives for predicting Off-Target events in CRISPR-based genome 
editing.  

Accurately identifying potential Off-Target effects is vital for the effective use of the CRISPR 
Cas-9 system. In recent years, computational techniques—particularly those rooted in machine 
learning—have made significant progress in domains such as genomic analysis, drug design, and 
motif identification. In line with this trend, predictive models have also been developed to assess 
CRISPR Off-Target activity. Earlier approaches were largely score-based, assigning values 
according to the number and positions of mismatches between the guide RNA and target sequences. 
However, these scoring systems often overlook the intricate relationships within DNA sequences 
and are susceptible to inconsistencies arising from experimental noise or limitations. 

 
2. LITERATURE REVIEW 

 
The development of the CRISPR-Cas9 genome editing system has profoundly transformed 

modern biology, offering a precise, accessible and highly efficient approach for targeted DNA 
modification across a wide range of organisms. The system relies on a single guide RNA (sgRNA) 
that directs the Cas9 nuclease to the desired genomic locus by complementary base-pairing with the 
target DNA sequence. Once the Cas9-sgRNA complex binds to its target, the nuclease introduces a 
double-strand break (DSB) at the site, which is subsequently repaired by the cell through either non-
homologous end joining (NHEJ) or homology-directed repair (HDR) [1]. 

Despite its programmability, CRISPR-Cas9 is not infallible. The system can tolerate 
mismatches between the sgRNA and the DNA target, particularly in regions outside the seed 
sequence, which is located adjacent to the protospacer adjacent motif (PAM) [2]. This mismatch 
tolerance can lead to unintended binding and cleavage at off-target sites, a phenomenon that poses 
significant risks in both therapeutic and experimental applications. Off-target effects typically arise 
from imperfect sgRNA-DNA interactions, including single or multiple mismatches, small insertions 
or deletions (indels) that result in local structural distortions (known as bulges), or errors introduced 
during DSB repair by NHEJ, which may cause additional indels at the cleavage site [3,4,5]. In the 
context of gene therapy, such unintended alterations can disrupt tumour suppressor genes or activate 
oncogenes, raising substantial safety concerns [6]. Even in basic research, undetected off-target 
edits can compromise gene-function studies, introducing confounding variables and misleading 
interpretations [7]. 

Several factors influence how often off-target events occur and how severe they are, including 
the number and position of mismatches, the local chromatin state, the availability of PAM sites, and 
the concentration of the Cas9–sgRNA complex within the cell [8]. These complexities make it 



essential to develop accurate computational tools for predicting off-target effects, supported by 
experimental validation, to ensure genome editing remains both reliable and safe. 

 
Early attempts to predict off-target activity mostly relied on alignment-based scoring and 

mismatch counting. Tools like CCTop [9] and CHOPCHOP [10] used straightforward heuristics to 
rank possible off-target sites based on sequence similarity and permitted mismatches, often placing 
particular emphasis on the presence of a protospacer adjacent motif (PAM). While these methods 
were useful for generating broad predictions, they fell short of capturing the more complex 
sequence dependencies and position-specific effects that are often seen in real CRISPR experiments. 

The development of high-throughput experimental validation methods, such as GUIDE-seq 
[11] and CIRCLE-seq [12], allowed researchers to move beyond purely heuristic models by 
generating large-scale, experimentally verified off-target datasets. Alongside these, other benchmark 
datasets like SITE-Seq, as well as several mismatch-based datasets including those from Haeussler, 
Hek293t, K562, and Listgarten, have become essential resources. Together, these datasets form the 
foundation for training machine learning and deep learning models capable of identifying binding 
patterns directly from real biological data. 

Deep learning has emerged as a particularly powerful approach for modelling genomic 
sequences. These architectures can automatically extract features from raw DNA data, allowing 
them to identify both low-level sequence motifs and more complex, higher-order dependencies that 
influence DNA–protein interactions. One of the earliest CRISPR-focused models, DeepCRISPR 
[13], used convolutional neural networks (CNNs) to detect local sequence patterns associated with 
Cas9 activity. Later models such as CnnCrispr [14] incorporated recurrent neural networks (RNNs) 
with CNNs,  specifically long short-term memory (LSTM) layers, to capture broader sequence 
context and global dependencies across input sequences. 

Further improvements have been achieved through the incorporation of attention mechanisms, 
originally introduced in the field of natural language processing [15]. Models that incorporate 
attention are able to assign varying levels of importance to different positions within a sequence, 
which often results in improved predictive accuracy and offers biologically interpretable insights 
into the regions of input that contribute most significantly to the model’s decision-making process 
[16,17]. This approach has proven particularly valuable in sequence-to-function prediction tasks, 
such as protein–DNA binding and variant effect prediction, where only a specific subset of 
nucleotides may determine the biological outcome. 

Another important aspect of CRISPR off-target prediction is the way in which DNA 
sequences are represented. Most existing models continue to rely on one-hot encoding, in which 
each nucleotide is expressed as a simple four-element vector. However, this method often restricts 
the model’s ability to identify higher-order motifs and complex biological patterns. Alternative 
encoding strategies, such as k-mer tokenisation, have demonstrated superior performance across a 
range of genomic prediction tasks [18,19]. By representing sequences as overlapping fixed-length 
subunits, k-mers allow deep learning models to capture biologically meaningful motifs and 
contextual dependencies more effectively than one-hot encodings. 

Building beyond these foundations, several specialised deep learning architectures have been 
developed to address the specific challenges associated with off-target prediction. Among these, the 
CRISPR-M model adopted a multi-branch design that combined CNN and RNN pathways, each 
independently processing local and global sequence features before merging their outputs for 



 

 

prediction [20]. This separation of features enabled the model to handle mismatches and indels more 
effectively, although the increased complexity of the architecture required larger datasets to achieve 
stable training. 

Another significant contribution was made by R-CRISPR, which employed binary matrix 
encoding to preserve position-specific information throughout the learning process [21]. The 
combination of convolutional and recurrent layers enabled the model to generalise across a range of 
sequence types, although it introduced greater sensitivity to class imbalance, particularly in cases 
where true off-target events were relatively rare. 

The CRISPR-IP model further extended the hybrid approach by integrating CNN, BiLSTM, 
and attention mechanisms within a single pipeline [22]. This design achieved strong predictive 
accuracy and improved biological interpretability, as the attention mechanism was able to highlight 
influential nucleotides within candidate off-target sequences. However, attention-based models tend 
to be computationally intensive and often require longer training cycles to converge effectively. 

The CRISPR-DIPOFF model shifted the focus of the field towards interpretability rather than 
maximising predictive performance. By using integrated gradients, this framework identified the 
sequence positions that exerted the greatest influence on model predictions [23]. Although this 
approach provided valuable biological insights, the predictive performance of DIPOFF was 
occasionally limited by its relatively shallow architecture when compared with deeper, multi-layer 
hybrid models [24]. 

In this study, novel deep learning architecture that integrates Capsule Networks with 
transformer blocks, bidirectional LSTM layers, and CNNs, all enriched by k-mer encoded sequence 
features and biological rule checks, to predict CRISPR-Cas9 off-target activity with high accuracy.  
The model is trained on a collection of experimentally validated datasets, including both indel-based 
sources (GUIDE-seq, CIRCLE-seq) and mismatch-based sources (Haeussler, Hek293t, K562, 
Listgarten, and SITE-Seq). To improve the model’s ability to detect biologically meaningful 
sequence patterns, input sequences are represented using k-mer-based tokenisation. This design 
aims to enhance both the accuracy and interpretability of off-target prediction, contributing to the 
continued development of computational tools for safer and more reliable genome editing. 
3. DATA COLLECTION AND PREPROCESSING 
3.1 DATASETS 

In this study, we utilized multiple publicly available datasets sourced from the Kaggle 
repository titled “Off-Target Datasets for CRISPR-Cas9.” The datasets, provided in CSV format, 
consist of both Indel and Mismatch types, each representing distinct aspects of CRISPR-Cas9 off-
target prediction. Specifically, the Indel datasets include GUIDE-Seq and CIRCLE-Seq, while the 
Mismatch datasets consist of Haeussler, Hek293t, K562, Listgarten, and SITE-Seq. These datasets 
contain DNA sequences and their corresponding off-target predictions, which are crucial for 
evaluating the efficiency and accuracy of CRISPR-Cas9 targeting. 

The datasets were processed through a standardized pipeline to maintain consistency. 
Columns were renamed according to a common convention, aligning guide sequences, off-target 
sequences, and labels across datasets [25]. This allowed the datasets to be merged into one unified 
dataset. Metadata, such as the source of the dataset and the type of sequence (Indel or Mismatch), 
was included for better clarity in subsequent analyses. 

 
3.2 DATA ANALYSIS 



Once the datasets were standardized and combined, the next step involved exploring their 
structure and class distribution. We examined the shape of each dataset and the overall combined 
dataset to ensure correct merging. A breakdown of the class distribution revealed an imbalanced 
dataset, with a higher proportion of samples belonging to one class over the other, which is common 
in biological datasets. 

To further analyze the characteristics of the data, we focused on the mismatch count between 
the guide and off-target sequences. The number of mismatches is an important feature in evaluating 
the specificity of CRISPR-Cas9 targeting. We calculated the mismatch count for each guide-off 
sequence pair, iterating through both sequences and counting the positions where the nucleotides 
differ. This  provides insights into the potential off-target effects of the CRISPR system.A detailed 
mismatch distribution was generated by grouping the data based on the mismatch count and the 
associated label [26]. This analysis offers an overview of how mismatch counts are distributed 
across off-target and on-target sequences, highlighting the prevalence of mismatches in different 
scenarios. 

 
3.3 CREATION OF SYNTHETIC DATA 

In order to augment the dataset and improve the model's ability to generalise, we generated 
synthetic data by introducing controlled mismatches to the sequences. This allowed us to simulate 
various levels of off-target activity, which is crucial for training a robust model. 

To augment the dataset, synthetic off-target sequences were created in three distinct categories 
based on their resemblance to the guide sequences. The first group comprised perfect matches, 
which were identical to the guide and presumed to have no off-target activity [27]. The second 
group , near perfect  involved sequences with 1–2 mismatches, considered likely to remain on-
target. The third group intermediate matches included sequences with 3–4 mismatches, reflecting 
uncertain off-target behavior. Labels were assigned using heuristic criteria, such as the presence of 
PAM-like motifs. These synthetic examples were then combined with the original data to support 
improved generalization and robustness in subsequent model training. 
4. FEATURE ENGINEERING AND K-MER PROCESSING 

Once the synthetic data was generated and merged with the original dataset, we proceeded 
with feature extraction. We focused on extracting meaningful features that could capture the 
complexities of the CRISPR-Cas9 off-target prediction task. 
4.1 K-MER EXTRACTION 

Once the synthetic data was generated and merged with the original dataset, we proceeded 
with feature extraction. We focused on extracting meaningful features that could capture the 
complexities of the CRISPR-Cas9 off-target prediction task.A critical feature in understanding 
sequence data is the use of k-mers, which are subsequences of length k that capture local patterns in 
DNA sequences. In this study, we used a k-mer length of 3 (trimer analysis), as it strikes a balance 
between capturing sequence motifs and maintaining computational efficiency.We created a mapping 
of all possible 3-mers from the nucleotide alphabet (A, C, G, T) and assigned each k-mer a unique 
index. This allowed us to convert the DNA sequences into numerical representations that could be 
fed into machine learning models. 
4.2 SEQUENCE REPRESENTATION 

For each sequence pair (guide and off-target), we computed several features to capture 
relevant sequence characteristics. First, both the guide and off-target sequences were converted into 



 

 

k-mer representations using a previously created mapping. This conversion allowed the model to 
capture sequence patterns that might indicate off-target potential. We also calculated the total 
number of mismatches between the guide and off-target sequences by comparing each nucleotide 
position in the two sequences. Additionally, we computed position-weighted mismatches, where 
mismatches closer to the PAM region were given higher importance due to their greater relevance in 
CRISPR-Cas9 targeting efficiency. The GC content of the off-target sequence was also calculated, 
as it is known to influence the efficiency of CRISPR-Cas9 targeting; higher GC content can affect 
the stability and binding efficiency of the guide sequence. Lastly, since the PAM region plays a 
crucial role in CRISPR-Cas9 targeting, we extracted the last three bases of the off-target sequence to 
check for the presence of common PAM motifs such as NGG, NAG, and NGA. Binary features 
were created to indicate the presence of each PAM sequence. 

Each sequence in the augmented dataset, which included both original and synthetic data, was 
processed using the above feature extraction methods. For each guide-off-target pair, we calculated 
the k-mer features for both the guide and off-target sequences, the total mismatch count, and the 
weighted mismatch count. Additionally, we computed the GC content of the off-target sequence and 
created binary flags indicating the presence of different PAM motifs. After processing, the extracted 
features were stored in a DataFrame for further analysis. 

After feature extraction, we calculated summary statistics for key features, including 
mismatch count, weighted mismatches, and GC content. We also examined the distribution of PAM 
motifs across the dataset. This analysis helped ensure that the feature engineering process had 
captured relevant characteristics of the sequences and prepared the data for model training. Once the 
feature extraction process was complete, we performed several steps to ensure the data was properly 
prepared for model training, focusing on sequence padding, numerical feature integration, and data 
balancing. 
4.3 CLASS IMBALANCE HANDLING 

Upon analyzing the class distribution of the dataset, it became evident that the dataset was 
imbalanced, with one class (either on-target or off-target) being more prevalent than the other. 
Addressing this class imbalance is critical for improving model performance and ensuring that the 
model is capable of predicting both classes accurately. 

To mitigate the impact of class imbalance, we employed a two-step process involving 
undersampling of the majority class and oversampling of the minority class. 
4.3.1 Majority Class Reduction (Undersampling) 

To begin addressing the class imbalance, we reduced the number of samples from the majority 
class in the training set. We identified the minority class (either 0 or 1, depending on the dataset) 
and calculated the number of samples in the minority class. The majority class was then 
undersampled to achieve a 2:1 ratio, where the majority class samples were reduced to twice the 
number of the minority class samples. 
4.3.2 Minority  Class Oversampling (SMOTE) 

Following the undersampling step, we used the Synthetic Minority Over-sampling Technique 
(SMOTE) to oversample the minority class and increase its representation in the training set. 
SMOTE creates synthetic samples of the minority class by interpolating between existing minority 
class samples, allowing the model to better learn the characteristics of the minority class. 

SMOTE was applied to both the sequence data and numerical features. The sequence data was 
reshaped before applying SMOTE, and the output was reshaped back to its original structure. This 



allowed us to balance the class distribution in the training set, ensuring that both classes had 
sufficient representation for model training. The final balanced dataset, with both undersampled 
majority class samples and oversampled minority class samples, was used for model training. 

 
5. METHODOLOGY 

This section describes the construction of an advanced hybrid model for CRISPR-Cas9 off-
target prediction, integrating Capsule Networks, Transformer layers, and a detailed PAM 
(Protospacer Adjacent Motif) detection mechanism. The model effectively combines both sequence-
based and numerical features to enhance the prediction accuracy. Figure 1  shows the breakdown of 
the methodology for each layer and component in the architecture. 
5.1 CAPSULE LAYER 

A Capsule Layer is used to capture spatial hierarchies in the data. The architecture of the 
Capsule Layer includes several key components: 

The input sequence is transformed by a weight matrix, which is trainable, enabling the model 
to learn the optimal transformation for each input. The output of each capsule is squashed to ensure 
the magnitude of the vector is between 0 and 1, thereby maintaining the notion of certainty in 
predictions.Capsules interact with each other through routing by agreement. This is achieved 
through the iterative refinement of the agreement between the capsules' predictions, improving the 
ability of the model to understand relationships between various features of the sequence. The 
CapsuleLayer accepts sequence input, transforms it via capsules, and produces output for further 
processing in the model. The capsule layer provides a robust mechanism for the model to capture 
complex patterns and hierarchical relationships within the sequence data. 
5.2 TRANSFORMER BLOCK 

The Transformer block is implemented to capture long-range dependencies and global 
patterns within the sequence data, which are essential for understanding sequence-specific motifs 
like PAM. The Transformer block includes Multi-Head Self-Attention which allows the model to 
focus on different parts of the input sequence simultaneously. It helps identify important features 
and relationships at various scales.A fully connected network follows the self-attention mechanism, 
consisting of a ReLU activation function and a second dense layer, which further processes the 
output of the attention layer.Layer Normalization is applied to stabilize the training process and 
speed up convergence by maintaining the distribution of activations.The transformer block refines 
sequence representations by leveraging attention mechanisms to learn contextual dependencies, 
which are crucial for tasks such as off-target prediction in CRISPR-Cas9 applications. 

 



 

 

 
 

Figure 1: Architecture of the proposed model 
 

5.3 PAM  DETECTION 
To capture the critical Protospacer Adjacent Motif (PAM), a dedicated step is introduced 

within the model. The PAM sequence is extracted from the target sequence to aid in off-target 
prediction:The target sequence is sliced to isolate the last three positions. After extraction, the PAM 
sequence is passed through a fully connected dense layer to further process and transform the 
extracted PAM features into a usable representation for downstream tasks. This explicit detection of 
the PAM sequence is a significant enhancement, allowing the model to better understand the 
specificity of CRISPR-Cas9 targeting. 
5.4 FEATURE FUSION 

The model incorporates multiple types of data: sequence-based features (guide and target 
sequences), numerical features (such as GC content, off-target scores, etc.), and the PAM-specific 
features. 
5.4.1 Guide and Target Embedding 

Both the guide and target sequences are independently embedded using an embedding layer, 
which converts the sequence of nucleotides into continuous-valued vectors. 
5.4.2 Concatenation 



The embedded guide and target sequences are concatenated to form a unified representation, 
which is then processed by convolutional layers. 
5.4.3 CNN and BiLSTM 

A Convolutional Neural Network (CNN) extracts local sequence patterns, followed by a 
Bidirectional Long Short-Term Memory (BiLSTM) layer, which learns temporal dependencies in 
the sequence. This combination allows the model to capture both local motifs and global sequence 
dependencies. 
5.4.4 Capsule Network 

After the CNN and BiLSTM layers, the data is processed by the Capsule Layer to capture 
hierarchical relationships between features. 
5.4 NUMERICAL FEATURE PROCESSING 

The model also includes numerical features that can significantly impact the CRISPR-Cas9 
off-target prediction. These features could include the distance between guide and target, GC 
content, or other domain-specific features: 
5.4.1 Dense Layer for Numerical Features 

The numerical features are processed through a fully connected layer with ReLU activation 
and dropout regularization. This allows the model to learn complex relationships between numerical 
and sequence-based features. 

The final output of the model is a binary classification, indicating whether a given guide-target 
pair will result in an off-target effect. The outputs of the Capsule Layer, numerical features, and 
PAM processing are concatenated. A dense layer with 64 units is applied to learn the joint 
representation of the sequence and numerical features. Dropout layers are applied throughout the 
network to prevent overfitting and ensure generalization. A final sigmoid activation function is used 
to produce the binary classification output (off-target vs. on-target). 

The proposed architecture combines advanced deep learning techniques — Capsule Networks, 
Transformer layers, and CNN-BiLSTM — to enhance the prediction of CRISPR-Cas9 off-target 
effects. The addition of a PAM detection mechanism and the careful fusion of both sequence-based 
and numerical features ensure that the model captures all critical aspects of the problem, offering a 
comprehensive approach to off-target prediction. Through this methodology, we aim to improve the 
specificity and efficiency of CRISPR-Cas9 genome-editing applications. 
6. EXPERIMENTAL RESULTS AND DISCUSSION 

Off-Target Datasets for CRISPR-Cas9 used in this research are sourced from kaggle. These 
datasets contain DNA sequences and their corresponding off-target predictions, which are crucial 
for evaluating the efficiency and accuracy of CRISPR-Cas9 targeting. 

The proposed model is compiled using the Adam optimizer with a learning rate of 0.001. The 
loss  function is binary cross-entropy, which is appropriate for binary classification tasks. The model 
is evaluated based on multiple metrics, including: 

Accuracy: Measures the overall correctness of the predictions. 
AUC (Area Under the ROC Curve): Assesses the model's ability to discriminate between 

positive and negative classes. 
Precision: Measures the proportion of true positives among all positive predictions. 
Recall: Measures the proportion of true positives among all actual positives. 
AUC-PR (Area Under the Precision-Recall Curve): Focuses on the model's performance when 

dealing with imbalanced classes. 



 

 

 
6.1 Training the Model 

 To address the class imbalance inherent in the CRISPR-Cas9 off-target prediction task, the 
model is trained using a balanced dataset. Class weights are calculated manually to give higher 
importance to the minority class (off-target predictions), ensuring that the model does not become 
biased towards the majority class. The class weights are defined as  

Class 0 (non-target): Weight = 1.0, Class 1 (off-target): Weight = 3.0 
This weighting scheme is applied to account for the higher importance of correctly identifying 

off-target sites. The model is compiled using the following configuration: 
Optimizer: The Adam optimizer is selected due to its adaptive learning rate properties, which 

are well-suited for training deep learning models on complex tasks such as off-target prediction. The 
learning rate is set to 0.001. 

Loss Function: The model utilizes binary cross-entropy as the loss function, suitable for 
binary classification problems. 

Evaluation Metrics: Several metrics are employed to assess the model's performance, with 
particular emphasis on metrics that are relevant for imbalanced datasets: 

Accuracy: Measures the proportion of correct predictions. 
Area Under the ROC Curve (AUC): Evaluates the model's ability to distinguish between 

classes. 
Area Under the Precision-Recall Curve (PR AUC): Provides insight into the model's ability to 

predict the minority class (off-target predictions). 
Precision and Recall: These metrics are crucial for evaluating the performance of the model in 

predicting the minority class. 
6.2 HYPERPARAMETER TUNING AND OPTIMIZATION 

The model is trained using the fit function, with the following parameters: 
Input Data: The model receives two inputs: the guide-target sequences and the associated 

numerical features. 
Epochs: The model is trained for 50 epochs to allow adequate learning and fine-tuning. 
Batch Size: A batch size of 64 is used for efficient training. 
Class Weights: The class weights are passed to the model to address class imbalance and 

ensure that the minority class is given higher importance during training. 
To prevent overfitting and improve model performance, several callbacks are used: 
EarlyStopping: This callback halts training if the validation PR AUC score does not improve 

for 10 consecutive epochs, and the best weights are restored. 
ReduceLROnPlateau: If the validation PR AUC score plateaus for 5 epochs, the learning rate 

is reduced by a factor of 0.5 to facilitate convergence. 
ModelCheckpoint: The best model, based on validation PR AUC, is saved during training to 

ensure that the optimal model is used for evaluation. 
Figure 2 and Figure 3 shows the Precision Recall and Precision  Recall AUC obtained through 

the model. 
We assessed the performance of the hybrid deep learning model by tracking key metrics, 

including precision, recall, and PR-AUC (Precision-Recall Area Under the Curve), throughout the 
training and validation stages. As training progressed, we observed consistent improvements, and 



the evaluation metrics for both the training and validation sets closely aligned. This suggests that the 
model generalised well, showing no significant overfitting despite the class imbalance in the dataset. 

To address this imbalance, we adjusted the test set distribution so that class 0 samples 
outnumbered class 1 samples by 40%. This modification reflected real-world conditions where off-
target edits are less frequent than true edits. As a result, the test set consisted of 3,487 samples from 
class 0 (58.3%) and 2,491 samples from class 1 (41.7%). 

The model performed exceptionally well on the modified test set, with class 0 showing a 
precision of 0.94 and recall of 0.95. For class 1, the precision was 0.93, and the recall was 0.92. The 
macro-average F1-score came out at 0.93, and the test PR-AUC was 0.9836. These results indicate 
that the model captured the relevant sequence and numerical features for off-target prediction, even 
in the face of class imbalance. The high PR-AUC value highlights the model’s strong ability to 
differentiate between the two classes, maintaining both sensitivity and specificity. 

 

 
Figure 2. Precision Recall curve of the proposed model 

 
Figure 3. Precision Recall - AUC curve of the proposed model 

 
In addition to conventional evaluation metrics, we developed a biologically-constrained 

prediction wrapper to improve the interpretability of the model’s predictions. This wrapper applies 
fundamental biological rules, such as checking for valid PAM sequences and filtering out perfect 
matches or targets with high mismatch counts. We tested this wrapper on a range of biologically 
diverse cases and found that it successfully filtered out irrelevant targets (e.g., perfect matches or 
invalid PAMs). The model then accurately handled more ambiguous cases, providing high-
confidence predictions. 



 

 

These results demonstrate not only the accuracy of the model but also its ability to respect 
essential biological constraints. This makes the model particularly suitable for applications in 
experimental screening and CRISPR-Cas9 off-target prediction, where both prediction accuracy and 
biological relevance are crucial. 

In this study, we introduced a comprehensive deep learning framework designed to improve 
the prediction of CRISPR-Cas9 off-target effects, which is a major challenge that continues to limit 
the safe clinical use of gene editing. Our hybrid model combines convolutional layers, bidirectional 
LSTMs, transformer blocks and capsule networks to learn both local and global patterns in guide 
and off-target DNA sequences. 

We enhanced the model’s interpretability and biological relevance by incorporating features 
such as mismatch counts, GC content and PAM motif presence, and applied rule-based biological 
checks to ensure the predictions align with established genomic behaviour. Using k-mer encoding 
and a multi-channel feature fusion strategy, the model captured sequence complexity effectively. 
We also addressed class imbalance through a combination of SMOTE oversampling and 
undersampling techniques, which helped the model generalise better across classes. 

Our results show that this multi-representational, biologically informed approach improves 
both sensitivity and specificity in off-target prediction, offering a practical tool to help prioritise off-
target candidates for experimental validation. By embedding biological insight within a powerful 
deep learning architecture, our method supports the more efficient and safer design of CRISPR-
based experiments. Looking ahead, we aim to expand the model to consider cell-type-specific 
chromatin environments and to validate its predictions on experimentally confirmed off-target 
datasets, moving it closer to clinical and therapeutic applications. 
7. CONCLUSION 

In this study, we introduced a comprehensive deep learning framework designed to improve 
the prediction of CRISPR-Cas9 off-target effects, which is a major challenge that continues to limit 
the safe clinical use of gene editing. Our hybrid model combines convolutional layers, bidirectional 
LSTMs, transformer blocks and capsule networks to learn both local and global patterns in guide 
and off-target DNA sequences. 

We enhanced the model’s interpretability and biological relevance by incorporating features 
such as mismatch counts, GC content and PAM motif presence, and applied rule-based biological 
checks to ensure the predictions align with established genomic behaviour. Using k-mer encoding 
and a multi-channel feature fusion strategy, the model captured sequence complexity effectively. 
We also addressed class imbalance through a combination of SMOTE oversampling and 
undersampling techniques, which helped the model generalise better across classes. 

Our results show that this multi-representational, biologically informed approach improves 
both sensitivity and specificity in off-target prediction, offering a practical tool to help prioritise off-
target candidates for experimental validation. By embedding biological insight within a powerful 
deep learning architecture, our method supports the more efficient and safer design of CRISPR-
based experiments. Looking ahead, we aim to expand the model to consider cell-type-specific 
chromatin environments and to validate its predictions on experimentally confirmed off-target 
datasets, moving it closer to clinical and therapeutic applications. 
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