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1. INTRODUCTION

CRISPR-Cas9, short for Clustered Regularly Interspaced 
Short Palindromic Repeats and CRISPR-associated protein 
9, is a powerful gene-editing tool derived from a bacterial 
immune response. It works by guiding the Cas9 enzyme 
to a specific DNA sequence using a matching RNA guide, 
enabling precise double-strand breaks at targeted genomic 
locations. Once the DNA is cut, the cell’s natural repair 
processes are activated. These repair mechanisms often 
introduce mutations that can disrupt the function of the 
targeted gene, effectively knocking it out. Alternatively, if 
a DNA template is provided during repair, the system can 
be used to insert or replace genetic material at the break 
site, allowing for accurate gene editing.

CRISPR holds immense potential with applications 
spanning various fields. It can be leveraged to investigate 
gene functions across species and transform agriculture by 
developing high-yield crops that are resistant to diseases 
and weeds. In the medical field, it offers promising avenues 
for treating genetic disorders. Despite its revolutionary 
capabilities, CRISPR faces significant challenges—most 
notably, Off-Target effects. These occur when the single 
guide RNA (sgRNA) binds to unintended DNA sites with 
minor mismatches, still leading to unintended double-strand 
breaks. Detecting these Off-Target sites using experimental 
approaches is often expensive and time-intensive. This 

challenge opens the door for computational models, which 
can provide efficient, accurate, and economical alternatives 
for predicting Off-Target events in CRISPR-based genome 
editing. 

Accurately identifying potential Off-Target effects is 
vital for the effective use of the CRISPR Cas-9 system. 
In recent years, computational techniques—particularly 
those rooted in machine learning—have made significant 
progress in domains such as genomic analysis, drug design, 
and motif identification. In line with this trend, predictive 
models have also been developed to assess CRISPR Off-
Target activity. Earlier approaches were largely score-
based, assigning values according to the number and 
positions of mismatches between the guide RNA and target 
sequences. However, these scoring systems often overlook 
the intricate relationships within DNA sequences and are 
susceptible to inconsistencies arising from experimental 
noise or limitations.

2. LITERATURE REVIEW

The development of the CRISPR-Cas9 genome editing 
system has profoundly transformed modern biology, 
offering a precise, accessible and highly efficient approach 
for targeted DNA modification across a wide range of 
organisms. The system relies on a single guide RNA 
(sgRNA) that directs the Cas9 nuclease to the desired 
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genomic locus by complementary base-pairing with the 
target DNA sequence. Once the Cas9-sgRNA complex 
binds to its target, the nuclease introduces a double-strand 
break (DSB) at the site, which is subsequently repaired 
by the cell through either non-homologous end joining 
(NHEJ) or homology-directed repair (HDR) [1].

Despite its programmability, CRISPR-Cas9 is not 
infallible. The system can tolerate mismatches between 
the sgRNA and the DNA target, particularly in regions 
outside the seed sequence, which is located adjacent to 
the protospacer adjacent motif (PAM) [2]. This mismatch 
tolerance can lead to unintended binding and cleavage at 
off-target sites, a phenomenon that poses significant risks 
in both therapeutic and experimental applications. Off-
target effects typically arise from imperfect sgRNA-DNA 
interactions, including single or multiple mismatches, small 
insertions or deletions (indels) that result in local structural 
distortions (known as bulges), or errors introduced during 
DSB repair by NHEJ, which may cause additional indels 
at the cleavage site [3,4,5]. In the context of gene therapy, 
such unintended alterations can disrupt tumour suppressor 
genes or activate oncogenes, raising substantial safety 
concerns [6]. Even in basic research, undetected off-target 
edits can compromise gene-function studies, introducing 
confounding variables and misleading interpretations [7].

Several factors influence how often off-target events occur 
and how severe they are, including the number and position 
of mismatches, the local chromatin state, the availability 
of PAM sites, and the concentration of the Cas9–sgRNA 
complex within the cell [8]. These complexities make 
it essential to develop accurate computational tools for 
predicting off-target effects, supported by experimental 
validation, to ensure genome editing remains both reliable 
and safe.

Early attempts to predict off-target activity mostly relied 
on alignment-based scoring and mismatch counting. 
Tools like CCTop [9] and CHOPCHOP [10] used 
straightforward heuristics to rank possible off-target sites 
based on sequence similarity and permitted mismatches, 
often placing particular emphasis on the presence of a 
protospacer adjacent motif (PAM). While these methods 
were useful for generating broad predictions, they fell short 
of capturing the more complex sequence dependencies and 
position-specific effects that are often seen in real CRISPR 
experiments.

The development of high-throughput experimental 
validation methods, such as GUIDE-seq [11] and CIRCLE-
seq [12], allowed researchers to move beyond purely 
heuristic models by generating large-scale, experimentally 
verified off-target datasets. Alongside these, other 
benchmark datasets like SITE-Seq, as well as several 
mismatch-based datasets including those from Haeussler, 
Hek293t, K562, and Listgarten, have become essential 
resources. Together, these datasets form the foundation 

for training machine learning and deep learning models 
capable of identifying binding patterns directly from real 
biological data.

Deep learning has emerged as a particularly powerful 
approach for modelling genomic sequences. These 
architectures can automatically extract features from 
raw DNA data, allowing them to identify both low-
level sequence motifs and more complex, higher-order 
dependencies that influence DNA–protein interactions. 
One of the earliest CRISPR-focused models, DeepCRISPR 
[13], used convolutional neural networks (CNNs) to detect 
local sequence patterns associated with Cas9 activity. Later 
models such as CnnCrispr [14] incorporated recurrent 
neural networks (RNNs) with CNNs, specifically long 
short-term memory (LSTM) layers, to capture broader 
sequence context and global dependencies across input 
sequences.

Further improvements have been achieved through 
the incorporation of attention mechanisms, originally 
introduced in the field of natural language processing 
[15]. Models that incorporate attention are able to assign 
varying levels of importance to different positions within 
a sequence, which often results in improved predictive 
accuracy and offers biologically interpretable insights into 
the regions of input that contribute most significantly to the 
model’s decision-making process [16,17]. This approach 
has proven particularly valuable in sequence-to-function 
prediction tasks, such as protein–DNA binding and 
variant effect prediction, where only a specific subset of 
nucleotides may determine the biological outcome.

Another important aspect of CRISPR off-target prediction 
is the way in which DNA sequences are represented. Most 
existing models continue to rely on one-hot encoding, 
in which each nucleotide is expressed as a simple four-
element vector. However, this method often restricts 
the model’s ability to identify higher-order motifs and 
complex biological patterns. Alternative encoding 
strategies, such as k-mer tokenisation, have demonstrated 
superior performance across a range of genomic prediction 
tasks [18,19]. By representing sequences as overlapping 
fixed-length subunits, k-mers allow deep learning models 
to capture biologically meaningful motifs and contextual 
dependencies more effectively than one-hot encodings.

Building beyond these foundations, several specialised 
deep learning architectures have been developed to 
address the specific challenges associated with off-
target prediction. Among these, the CRISPR-M model 
adopted a multi-branch design that combined CNN and 
RNN pathways, each independently processing local and 
global sequence features before merging their outputs for 
prediction [20]. This separation of features enabled the 
model to handle mismatches and indels more effectively, 
although the increased complexity of the architecture 
required larger datasets to achieve stable training.
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Another significant contribution was made by R-CRISPR, 
which employed binary matrix encoding to preserve 
position-specific information throughout the learning 
process [21]. The combination of convolutional and 
recurrent layers enabled the model to generalise across 
a range of sequence types, although it introduced greater 
sensitivity to class imbalance, particularly in cases where 
true off-target events were relatively rare.

The CRISPR-IP model further extended the hybrid 
approach by integrating CNN, BiLSTM, and attention 
mechanisms within a single pipeline [22]. This design 
achieved strong predictive accuracy and improved 
biological interpretability, as the attention mechanism was 
able to highlight influential nucleotides within candidate 
off-target sequences. However, attention-based models 
tend to be computationally intensive and often require 
longer training cycles to converge effectively.

The CRISPR-DIPOFF model shifted the focus of the 
field towards interpretability rather than maximising 
predictive performance. By using integrated gradients, this 
framework identified the sequence positions that exerted 
the greatest influence on model predictions [23]. Although 
this approach provided valuable biological insights, the 
predictive performance of DIPOFF was occasionally 
limited by its relatively shallow architecture when 
compared with deeper, multi-layer hybrid models [24].

In this study, novel deep learning architecture that integrates 
Capsule Networks with transformer blocks, bidirectional 
LSTM layers, and CNNs, all enriched by k-mer encoded 
sequence features and biological rule checks, to predict 
CRISPR-Cas9 off-target activity with high accuracy. The 
model is trained on a collection of experimentally validated 
datasets, including both indel-based sources (GUIDE-seq, 
CIRCLE-seq) and mismatch-based sources (Haeussler, 
Hek293t, K562, Listgarten, and SITE-Seq). To improve 
the model’s ability to detect biologically meaningful 
sequence patterns, input sequences are represented using 
k-mer-based tokenisation. This design aims to enhance 
both the accuracy and interpretability of off-target 
prediction, contributing to the continued development of 
computational tools for safer and more reliable genome 
editing.

3. DATA COLLECTION AND 
PREPROCESSING

3.1 DATASETS

In this study, we utilized multiple publicly available 
datasets sourced from the Kaggle repository titled “Off-
Target Datasets for CRISPR-Cas9.” The datasets, provided 
in CSV format, consist of both Indel and Mismatch types, 
each representing distinct aspects of CRISPR-Cas9 off-
target prediction. Specifically, the Indel datasets include 
GUIDE-Seq and CIRCLE-Seq, while the Mismatch 

datasets consist of Haeussler, Hek293t, K562, Listgarten, 
and SITE-Seq. These datasets contain DNA sequences 
and their corresponding off-target predictions, which 
are crucial for evaluating the efficiency and accuracy of 
CRISPR-Cas9 targeting.

The datasets were processed through a standardized pipeline 
to maintain consistency. Columns were renamed according 
to a common convention, aligning guide sequences, off-
target sequences, and labels across datasets [25]. This 
allowed the datasets to be merged into one unified dataset. 
Metadata, such as the source of the dataset and the type 
of sequence (Indel or Mismatch), was included for better 
clarity in subsequent analyses.

3.2 DATA ANALYSIS

Once the datasets were standardized and combined, the 
next step involved exploring their structure and class 
distribution. We examined the shape of each dataset and 
the overall combined dataset to ensure correct merging. A 
breakdown of the class distribution revealed an imbalanced 
dataset, with a higher proportion of samples belonging to 
one class over the other, which is common in biological 
datasets.

To further analyze the characteristics of the data, we 
focused on the mismatch count between the guide and 
off-target sequences. The number of mismatches is an 
important feature in evaluating the specificity of CRISPR-
Cas9 targeting. We calculated the mismatch count for each 
guide-off sequence pair, iterating through both sequences 
and counting the positions where the nucleotides differ. 
This provides insights into the potential off-target effects 
of the CRISPR system.A detailed mismatch distribution 
was generated by grouping the data based on the mismatch 
count and the associated label [26]. This analysis offers 
an overview of how mismatch counts are distributed 
across off-target and on-target sequences, highlighting the 
prevalence of mismatches in different scenarios.

3.3 CREATION OF SYNTHETIC DATA

In order to augment the dataset and improve the model’s 
ability to generalise, we generated synthetic data by 
introducing controlled mismatches to the sequences. This 
allowed us to simulate various levels of off-target activity, 
which is crucial for training a robust model.

To augment the dataset, synthetic off-target sequences 
were created in three distinct categories based on their 
resemblance to the guide sequences. The first group 
comprised perfect matches, which were identical to the 
guide and presumed to have no off-target activity [27]. The 
second group, near perfect involved sequences with 1–2 
mismatches, considered likely to remain on-target. The 
third group intermediate matches included sequences with 
3–4 mismatches, reflecting uncertain off-target behavior. 
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Labels were assigned using heuristic criteria, such as the 
presence of PAM-like motifs. These synthetic examples 
were then combined with the original data to support 
improved generalization and robustness in subsequent 
model training.

4. FEATURE ENGINEERING AND K-MER 
PROCESSING

Once the synthetic data was generated and merged with 
the original dataset, we proceeded with feature extraction. 
We focused on extracting meaningful features that could 
capture the complexities of the CRISPR-Cas9 off-target 
prediction task.

4.1 K-MER EXTRACTION

Once the synthetic data was generated and merged with 
the original dataset, we proceeded with feature extraction. 
We focused on extracting meaningful features that could 
capture the complexities of the CRISPR-Cas9 off-target 
prediction task.A critical feature in understanding sequence 
data is the use of k-mers, which are subsequences of length 
k that capture local patterns in DNA sequences. In this study, 
we used a k-mer length of 3 (trimer analysis), as it strikes a 
balance between capturing sequence motifs and maintaining 
computational efficiency.We created a mapping of all 
possible 3-mers from the nucleotide alphabet (A, C, G, T) 
and assigned each k-mer a unique index. This allowed us to 
convert the DNA sequences into numerical representations 
that could be fed into machine learning models.

4.2 SEQUENCE REPRESENTATION

For each sequence pair (guide and off-target), we computed 
several features to capture relevant sequence characteristics. 
First, both the guide and off-target sequences were converted 
into k-mer representations using a previously created 
mapping. This conversion allowed the model to capture 
sequence patterns that might indicate off-target potential. We 
also calculated the total number of mismatches between the 
guide and off-target sequences by comparing each nucleotide 
position in the two sequences. Additionally, we computed 
position-weighted mismatches, where mismatches closer to 
the PAM region were given higher importance due to their 
greater relevance in CRISPR-Cas9 targeting efficiency. The 
GC content of the off-target sequence was also calculated, 
as it is known to influence the efficiency of CRISPR-Cas9 
targeting; higher GC content can affect the stability and 
binding efficiency of the guide sequence. Lastly, since the 
PAM region plays a crucial role in CRISPR-Cas9 targeting, 
we extracted the last three bases of the off-target sequence 
to check for the presence of common PAM motifs such as 
NGG, NAG, and NGA. Binary features were created to 
indicate the presence of each PAM sequence.

Each sequence in the augmented dataset, which included 
both original and synthetic data, was processed using the 

above feature extraction methods. For each guide-off-target 
pair, we calculated the k-mer features for both the guide 
and off-target sequences, the total mismatch count, and the 
weighted mismatch count. Additionally, we computed the 
GC content of the off-target sequence and created binary 
flags indicating the presence of different PAM motifs. 
After processing, the extracted features were stored in a 
DataFrame for further analysis.

After feature extraction, we calculated summary statistics 
for key features, including mismatch count, weighted 
mismatches, and GC content. We also examined the 
distribution of PAM motifs across the dataset. This 
analysis helped ensure that the feature engineering process 
had captured relevant characteristics of the sequences and 
prepared the data for model training. Once the feature 
extraction process was complete, we performed several 
steps to ensure the data was properly prepared for model 
training, focusing on sequence padding, numerical feature 
integration, and data balancing.

4.3 CLASS IMBALANCE HANDLING

Upon analyzing the class distribution of the dataset, it 
became evident that the dataset was imbalanced, with one 
class (either on-target or off-target) being more prevalent 
than the other. Addressing this class imbalance is critical 
for improving model performance and ensuring that the 
model is capable of predicting both classes accurately.

To mitigate the impact of class imbalance, we employed a 
two-step process involving undersampling of the majority 
class and oversampling of the minority class.

4.3.1 Majority Class Reduction (Undersampling)

To begin addressing the class imbalance, we reduced 
the number of samples from the majority class in the 
training set. We identified the minority class (either 0 or 
1, depending on the dataset) and calculated the number of 
samples in the minority class. The majority class was then 
undersampled to achieve a 2:1 ratio, where the majority 
class samples were reduced to twice the number of the 
minority class samples.

4.3.2 Minority Class Oversampling (SMOTE)

Following the undersampling step, we used the 
Synthetic Minority Over-sampling Technique (SMOTE) 
to oversample the minority class and increase its 
representation in the training set. SMOTE creates synthetic 
samples of the minority class by interpolating between 
existing minority class samples, allowing the model to 
better learn the characteristics of the minority class.

SMOTE was applied to both the sequence data and 
numerical features. The sequence data was reshaped before 
applying SMOTE, and the output was reshaped back to 
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its original structure. This allowed us to balance the class 
distribution in the training set, ensuring that both classes 
had sufficient representation for model training. The final 
balanced dataset, with both undersampled majority class 
samples and oversampled minority class samples, was 
used for model training.

5. METHODOLOGY

This section describes the construction of an advanced 
hybrid model for CRISPR-Cas9 off-target prediction, 
integrating Capsule Networks, Transformer layers, and 
a detailed PAM (Protospacer Adjacent Motif) detection 
mechanism. The model effectively combines both 
sequence-based and numerical features to enhance the 
prediction accuracy. Figure 1 shows the breakdown of 
the methodology for each layer and component in the 
architecture.

5.1 CAPSULE LAYER

A Capsule Layer is used to capture spatial hierarchies in 
the data. The architecture of the Capsule Layer includes 
several key components:

The input sequence is transformed by a weight matrix, 
which is trainable, enabling the model to learn the 
optimal transformation for each input. The output of each 
capsule is squashed to ensure the magnitude of the vector 
is between 0 and 1, thereby maintaining the notion of 
certainty in predictions.Capsules interact with each other 
through routing by agreement. This is achieved through 
the iterative refinement of the agreement between the 
capsules’ predictions, improving the ability of the model 
to understand relationships between various features of 
the sequence. The CapsuleLayer accepts sequence input, 
transforms it via capsules, and produces output for further 
processing in the model. The capsule layer provides a 
robust mechanism for the model to capture complex 
patterns and hierarchical relationships within the sequence 
data.

5.2 TRANSFORMER BLOCK

The Transformer block is implemented to capture long-
range dependencies and global patterns within the 
sequence data, which are essential for understanding 
sequence-specific motifs like PAM. The Transformer 
block includes Multi-Head Self-Attention which allows 
the model to focus on different parts of the input sequence 
simultaneously. It helps identify important features and 
relationships at various scales.A fully connected network 
follows the self-attention mechanism, consisting of a 
ReLU activation function and a second dense layer, which 
further processes the output of the attention layer.Layer 
Normalization is applied to stabilize the training process 
and speed up convergence by maintaining the distribution 
of activations.The transformer block refines sequence 

representations by leveraging attention mechanisms to 
learn contextual dependencies, which are crucial for tasks 
such as off-target prediction in CRISPR-Cas9 applications.

5.3 PAM DETECTION

To capture the critical Protospacer Adjacent Motif (PAM), 
a dedicated step is introduced within the model. The PAM 
sequence is extracted from the target sequence to aid in 
off-target prediction:The target sequence is sliced to 
isolate the last three positions. After extraction, the PAM 
sequence is passed through a fully connected dense layer to 
further process and transform the extracted PAM features 
into a usable representation for downstream tasks. This 

Figure 1. Architecture of the proposed model
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explicit detection of the PAM sequence is a significant 
enhancement, allowing the model to better understand the 
specificity of CRISPR-Cas9 targeting.

5.4 FEATURE FUSION

The model incorporates multiple types of data: sequence-
based features (guide and target sequences), numerical 
features (such as GC content, off-target scores, etc.), and 
the PAM-specific features.

5.4.1 Guide and Target Embedding

Both the guide and target sequences are independently 
embedded using an embedding layer, which converts the 
sequence of nucleotides into continuous-valued vectors.

5.4.2 Concatenation

The embedded guide and target sequences are concatenated 
to form a unified representation, which is then processed 
by convolutional layers.

5.4.3 CNN and BiLSTM

A Convolutional Neural Network (CNN) extracts local 
sequence patterns, followed by a Bidirectional Long Short-
Term Memory (BiLSTM) layer, which learns temporal 
dependencies in the sequence. This combination allows 
the model to capture both local motifs and global sequence 
dependencies.

5.4.4 Capsule Network

After the CNN and BiLSTM layers, the data is processed 
by the Capsule Layer to capture hierarchical relationships 
between features.

5.4 NUMERICAL FEATURE PROCESSING

The model also includes numerical features that can 
significantly impact the CRISPR-Cas9 off-target prediction. 
These features could include the distance between guide 
and target, GC content, or other domain-specific features:

5.4.1 Dense Layer for Numerical Features

The numerical features are processed through a fully 
connected layer with ReLU activation and dropout 
regularization. This allows the model to learn complex 
relationships between numerical and sequence-based 
features.

The final output of the model is a binary classification, 
indicating whether a given guide-target pair will result 
in an off-target effect. The outputs of the Capsule Layer, 
numerical features, and PAM processing are concatenated. 
A dense layer with 64 units is applied to learn the joint 

representation of the sequence and numerical features. 
Dropout layers are applied throughout the network to 
prevent overfitting and ensure generalization. A final 
sigmoid activation function is used to produce the binary 
classification output (off-target vs. on-target).

The proposed architecture combines advanced deep 
learning techniques — Capsule Networks, Transformer 
layers, and CNN-BiLSTM — to enhance the prediction 
of CRISPR-Cas9 off-target effects. The addition of a 
PAM detection mechanism and the careful fusion of both 
sequence-based and numerical features ensure that the 
model captures all critical aspects of the problem, offering a 
comprehensive approach to off-target prediction. Through 
this methodology, we aim to improve the specificity and 
efficiency of CRISPR-Cas9 genome-editing applications.

6. EXPERIMENTAL RESULTS AND 
DISCUSSION

Off-Target Datasets for CRISPR-Cas9 used in this research 
are sourced from kaggle. These datasets contain DNA 
sequences and their corresponding off-target predictions, 
which are crucial for evaluating the efficiency and accuracy 
of CRISPR-Cas9 targeting.

The proposed model is compiled using the Adam optimizer 
with a learning rate of 0.001. The loss function is binary 
cross-entropy, which is appropriate for binary classification 
tasks. The model is evaluated based on multiple metrics, 
including:

Accuracy: Measures the overall correctness of the 
predictions.

AUC (Area Under the ROC Curve): Assesses the model’s 
ability to discriminate between positive and negative 
classes.

Precision: Measures the proportion of true positives among 
all positive predictions.

Recall: Measures the proportion of true positives among 
all actual positives.

AUC-PR (Area Under the Precision-Recall Curve): 
Focuses on the model’s performance when dealing with 
imbalanced classes.

6.1 TRAINING THE MODEL

To address the class imbalance inherent in the CRISPR-
Cas9 off-target prediction task, the model is trained using 
a balanced dataset. Class weights are calculated manually 
to give higher importance to the minority class (off-target 
predictions), ensuring that the model does not become 
biased towards the majority class. The class weights are 
defined as 



7

TECHNOLOGIES AND THEIR EFFECTS ON REAL-TIME SOCIAL DEVELOPMENT, VOL 167, PART A2 (S), 2025

Class 0 (non-target): Weight = 1.0, Class 1 (off-target): 
Weight = 3.0

This weighting scheme is applied to account for the higher 
importance of correctly identifying off-target sites. The 
model is compiled using the following configuration:

Optimizer: The Adam optimizer is selected due to its 
adaptive learning rate properties, which are well-suited for 
training deep learning models on complex tasks such as 
off-target prediction. The learning rate is set to 0.001.

Loss Function: The model utilizes binary cross-entropy 
as the loss function, suitable for binary classification 
problems.

Evaluation Metrics: Several metrics are employed to 
assess the model’s performance, with particular emphasis 
on metrics that are relevant for imbalanced datasets:

Accuracy: Measures the proportion of correct predictions.

Area Under the ROC Curve (AUC): Evaluates the model’s 
ability to distinguish between classes.

Area Under the Precision-Recall Curve (PR AUC): 
Provides insight into the model’s ability to predict the 
minority class (off-target predictions).

Precision and Recall: These metrics are crucial for 
evaluating the performance of the model in predicting the 
minority class.

6.2 HYPERPARAMETER TUNING AND 
OPTIMIZATION

The model is trained using the fit function, with the 
following parameters:

Input Data: The model receives two inputs: the guide-
target sequences and the associated numerical features.

Epochs: The model is trained for 50 epochs to allow 
adequate learning and fine-tuning.

Batch Size: A batch size of 64 is used for efficient training.

Class Weights: The class weights are passed to the model 
to address class imbalance and ensure that the minority 
class is given higher importance during training.

To prevent overfitting and improve model performance, 
several callbacks are used:

EarlyStopping: This callback halts training if the validation 
PR AUC score does not improve for 10 consecutive 
epochs, and the best weights are restored.

ReduceLROnPlateau: If the validation PR AUC score 
plateaus for 5 epochs, the learning rate is reduced by a 
factor of 0.5 to facilitate convergence.

ModelCheckpoint: The best model, based on validation PR 
AUC, is saved during training to ensure that the optimal 
model is used for evaluation.

Figure 2 and Figure 3 shows the Precision Recall and 
Precision Recall AUC obtained through the model.

We assessed the performance of the hybrid deep learning 
model by tracking key metrics, including precision, recall, 
and PR-AUC (Precision-Recall Area Under the Curve), 
throughout the training and validation stages. As training 
progressed, we observed consistent improvements, and the 
evaluation metrics for both the training and validation sets 

Figure 2. Precision recall curve of the proposed model

Figure 3. Precision recall - AUC curve of the proposed 
model
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closely aligned. This suggests that the model generalised 
well, showing no significant overfitting despite the class 
imbalance in the dataset.

To address this imbalance, we adjusted the test set 
distribution so that class 0 samples outnumbered class 1 
samples by 40%. This modification reflected real-world 
conditions where off-target edits are less frequent than true 
edits. As a result, the test set consisted of 3,487 samples from 
class 0 (58.3%) and 2,491 samples from class 1 (41.7%).

The model performed exceptionally well on the modified 
test set, with class 0 showing a precision of 0.94 and 
recall of 0.95. For class 1, the precision was 0.93, and the 
recall was 0.92. The macro-average F1-score came out 
at 0.93, and the test PR-AUC was 0.9836. These results 
indicate that the model captured the relevant sequence and 
numerical features for off-target prediction, even in the face 
of class imbalance. The high PR-AUC value highlights 
the model’s strong ability to differentiate between the two 
classes, maintaining both sensitivity and specificity.

In addition to conventional evaluation metrics, we 
developed a biologically-constrained prediction wrapper 
to improve the interpretability of the model’s predictions. 
This wrapper applies fundamental biological rules, such as 
checking for valid PAM sequences and filtering out perfect 
matches or targets with high mismatch counts. We tested 
this wrapper on a range of biologically diverse cases and 
found that it successfully filtered out irrelevant targets 
(e.g., perfect matches or invalid PAMs). The model then 
accurately handled more ambiguous cases, providing high-
confidence predictions.

These results demonstrate not only the accuracy of the 
model but also its ability to respect essential biological 
constraints. This makes the model particularly suitable for 
applications in experimental screening and CRISPR-Cas9 
off-target prediction, where both prediction accuracy and 
biological relevance are crucial.

In this study, we introduced a comprehensive deep learning 
framework designed to improve the prediction of CRISPR-
Cas9 off-target effects, which is a major challenge that 
continues to limit the safe clinical use of gene editing. Our 
hybrid model combines convolutional layers, bidirectional 
LSTMs, transformer blocks and capsule networks to learn 
both local and global patterns in guide and off-target DNA 
sequences.

We enhanced the model’s interpretability and biological 
relevance by incorporating features such as mismatch 
counts, GC content and PAM motif presence, and applied 
rule-based biological checks to ensure the predictions 
align with established genomic behaviour. Using k-mer 
encoding and a multi-channel feature fusion strategy, 
the model captured sequence complexity effectively. We 
also addressed class imbalance through a combination of 

SMOTE oversampling and undersampling techniques, 
which helped the model generalise better across classes.

Our results show that this multi-representational, 
biologically informed approach improves both sensitivity 
and specificity in off-target prediction, offering a practical 
tool to help prioritise off-target candidates for experimental 
validation. By embedding biological insight within a 
powerful deep learning architecture, our method supports 
the more efficient and safer design of CRISPR-based 
experiments. Looking ahead, we aim to expand the model 
to consider cell-type-specific chromatin environments and 
to validate its predictions on experimentally confirmed 
off-target datasets, moving it closer to clinical and 
therapeutic applications.

7. CONCLUSION

In this study, we introduced a comprehensive deep learning 
framework designed to improve the prediction of CRISPR-
Cas9 off-target effects, which is a major challenge that 
continues to limit the safe clinical use of gene editing. Our 
hybrid model combines convolutional layers, bidirectional 
LSTMs, transformer blocks and capsule networks to learn 
both local and global patterns in guide and off-target DNA 
sequences.

We enhanced the model’s interpretability and biological 
relevance by incorporating features such as mismatch 
counts, GC content and PAM motif presence, and applied 
rule-based biological checks to ensure the predictions 
align with established genomic behaviour. Using k-mer 
encoding and a multi-channel feature fusion strategy, 
the model captured sequence complexity effectively. We 
also addressed class imbalance through a combination of 
SMOTE oversampling and undersampling techniques, 
which helped the model generalise better across classes.

Our results show that this multi-representational, biologically 
informed approach improves both sensitivity and specificity 
in off-target prediction, offering a practical tool to help 
prioritise off-target candidates for experimental validation. 
By embedding biological insight within a powerful deep 
learning architecture, our method supports the more 
efficient and safer design of CRISPR-based experiments. 
Looking ahead, we aim to expand the model to consider 
cell-type-specific chromatin environments and to validate its 
predictions on experimentally confirmed off-target datasets, 
moving it closer to clinical and therapeutic applications.
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