Deep Neural Strategies for Uncovering Climbing Elements and Mapping Route Patterns
Main Article Content
Abstract
Article Details
References
“Kilter Board Website,” https://kilterboardapp.com/, ac- cessed: 2023-03-24.
Srinivasa Sai Abhijit Challapalli, Bala kandukuri, Hari Bandireddi, & Jahnavi Pudi. “Profile Face Recognition and Classification Using Multi-Task Cascaded Convolutional Networks,” Journal of Computer Allied Intelligence, 2(6), 65-78, 2024. https://doi.org/10.69996/jcai.2024029
A. Dobles, J. C. Sarmiento, and P. Satterthwaite, “Ma- chine Learning Methods for Climbing Route Classifica- tion,” Stanford, Tech. Rep., 2017, https://cs229.stanford. edu/proj2017/final-reports/5232206.pdf.
S. Ekaireb, M. A. Khan, P. Pathuri, P. H. Bha- tia, R. Sharma, and N. Manjunath-Murkal, “Com- puter Vision Based Indoor Rock Climbing Analy- sis,” University of California San Diego, Tech. Rep., 2022, https://kastner.ucsd.edu/ryan/wp-content/uploads/ sites/5/2022/06/admin/rock-climbing-coach.pdf.
B. Murphy, “CLIMBNET – CNN for detecting + segmenting indoor climbing holds,” https://github.com/ cydivision/climbnet, 2020, accessed: 2023-03-23.
E. Wei, “Indoor Rock Climbing Wall Route Displayer,” Stanford University, Tech. Rep., 2014, https://stacks. stanford.edu/file/druid:bf950qp8995/Wei.pdf.
A. Dutta, A. Gupta, and A. Zissermann, “VGG im- age annotator (VIA),” http://www.robots.ox.ac.uk/∼vgg/ software/via/, 2016, version: 2.0.12, Accessed: 2023-03-16.
A. Dutta and A. Zisserman, “The VIA annotation software for images, audio and video,” in Proceedings of the 27th ACM International Conference on Multimedia, ser. MM ’19. New York, NY, USA: ACM, 2019. [Online]. Available: https://doi.org/10.1145/3343031.3350535
K. Kisin, P. Go¨ldner, T. Sla´ma, and V. S. Sanjaybhai, “Kaggle: Indoor climbing gym hold segmentation dataset,” https://www.kaggle.com/datasets/tomasslama/ indoor-climbing-gym-hold-segmentation, 2023, accessed: 2023-03-29.
Srinivasa Sai Abhijit Challapalli. “Sentiment Analysis of the Twitter Dataset for the Prediction of Sentiments,” Journal of Sensors, IoT & Health Sciences, 2(4), 1-15, 2024. https://doi.org/10.69996/jsihs.2024017
K. He, G. Gkioxari, P. Dolla´r, and R. B. Girshick, “Mask R-CNN,” CoRR, vol. abs/1703.06870, 2017. [Online]. Available: http://arxiv.org/abs/1703.06870
Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,” https://github.com/facebookresearch/ detectron2, 2019.
T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona, D. Ramanan, P. Dolla´r, and C. L. Zitnick, “Microsoft COCO: common objects in context,” CoRR, vol. abs/1405.0312, 2014. [Online]. Available: http://arxiv.org/abs/1405.0312
Massoud Qasimi. “Personalized Recommendation Intelligent Fuzzy Clustering Model for the Tourism,” Journal of Computer Allied Intelligence, 2(5), 42-53, 2024. https://doi.org/10.69996/jcai.2024024
G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for one-shot image recognition,” 2015. [Online]. Available: https://www.cs.cmu.edu/∼rsalakhu/ papers/oneshot1.pdf
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available: http://arxiv. org/abs/1512.03385
I. Loshchilov and F. Hutter, “Fixing weight decay regu- larization in adam,” CoRR, vol. abs/1711.05101, 2017. [Online]. Available: http://arxiv.org/abs/1711.05101
F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recognition and clustering,” CoRR, vol. abs/1503.03832, 2015. [Online]. Available: http://arxiv.org/abs/1503.03832
Srinivasa Sai Abhijit Challapalli. “Optimizing Dallas-Fort Worth Bus Transportation System Using Any Logic,” Journal of Sensors, IoT & Health Sciences (JSIHS,ISSN: 2584-2560), 2(4), 40-55, 2024. https://doi.org/10.69996/jsihs.2024020