Advanced Convolutional Neural Network with SqueezeNet Optimization and Transfer Learning for MRI-Based Brain Tumor Segmentation and Classification
Main Article Content
Abstract
Article Details
References
Anwar, R. W., Abrar, M., & Ullah, F. (2023, October). Transfer learning in brain tumor classification: challenges, opportunities, and future prospects. In 2023 14th International Conference on Information and Communication Technology Convergence (ICTC) (pp. 24-29). IEEE.
Kumar, S., Choudhary, S., Jain, A., Singh, K., Ahmadian, A., & Bajuri, M. Y. (2023). Brain tumor classification using deep neural network and transfer learning. Brain topography, 36(3), 305-318.
Vinay Kumar, K., Sumanaswini Palakurthy, Sri Harsha Balijadaddanala, Sharmila Reddy Pappula, & Anil Kumar Lavudya. (2024). Early Detection and Diagnosis of Oral Cancer Using Deep Neural Network. Journal of Computer Allied Intelligence, 2(2), 22-34.
Özkaraca, O., Bağrıaçık, O. İ., Gürüler, H., Khan, F., Hussain, J., Khan, J., & Laila, U. E. (2023). Multiple brain tumor classification with dense CNN architecture using brain MRI images. Life, 13(2), 349.
Kurdi, S. Z., Ali, M. H., Jaber, M. M., Saba, T., Rehman, A., & Damaševičius, R. (2023). Brain tumor classification using meta-heuristic optimized convolutional neural networks. Journal of Personalized Medicine, 13(2), 181.
Hajira Be, A.B. (2024). Feature Selection and Classification with the Annealing Optimization Deep Learning for the Multi-Modal Image Processing. Journal of Computer Allied Intelligence, 2(3), 55-66.
Neamah, K., Mohamed, F., Adnan, M. M., Saba, T., Bahaj, S. A., Kadhim, K. A., & Khan, A. R. (2023). Brain tumor classification and detection based DL models: a systematic review. IEEE Access, 12, 2517-2542.
Srinivasa Sai Abhijit Challapalli. (2024). Sentiment Analysis of the Twitter Dataset for the Prediction of Sentiments. Journal of Sensors, IoT & Health Sciences, 2(4), 1-15. Sharma, A. K., Nandal, A., Dhaka, A., Zhou, L., Alhudhaif, A., Alenezi, F., & Polat, K. (2023). Brain tumor classification using the modified ResNet50 model based on transfer learning. Biomedical Signal Processing and Control, 86, 105299.
Mijwil, M. M., Doshi, R., Hiran, K. K., Unogwu, O. J., & Bala, I. (2023). MobileNetV1-based deep learning model for accurate brain tumor classification. Mesopotamian Journal of Computer Science, 2023, 29-38.
Mehnatkesh, H., Jalali, S. M. J., Khosravi, A., & Nahavandi, S. (2023). An intelligent driven deep residual learning framework for brain tumor classification using MRI images. Expert Systems with Applications, 213, 119087.
Srinivasa Sai Abhijit Challapalli. (2024). Optimizing Dallas-Fort Worth Bus Transportation System Using Any Logic. Journal of Sensors, IoT & Health Sciences, 2(4), 40-55.
Solanki, S., Singh, U. P., & Chouhan, S. S. (2023, October). Brain tumor classification using ML and DL approaches. In 2023 IEEE 5th international conference on cybernetics, cognition and machine learning applications (ICCCMLA) (pp. 204-208). IEEE.
Solanki, S., Singh, U. P., Chouhan, S. S., & Jain, S. (2023). Brain tumor detection and classification using intelligence techniques: an overview. IEEE Access, 11, 12870-12886.
Kumar, S., & Kumar, D. (2023). Human brain tumor classification and segmentation using CNN. Multimedia Tools and Applications, 82(5), 7599-7620.
Haq, M. A., Khan, I., Ahmed, A., Eldin, S. M., Alshehri, A., & Ghamry, N. A. (2023). DCNNBT: A novel deep convolution neural network-based brain tumor classification model. Fractals, 31(06), 2340102.
Wang, J., Lu, S. Y., Wang, S. H., & Zhang, Y. D. (2024). RanMerFormer: Randomized vision transformer with token merging for brain tumor classification. Neurocomputing, 573, 127216.
Mahmoud, A., Awad, N. A., Alsubaie, N., Ansarullah, S. I., Alqahtani, M. S., Abbas, M., ... & Saber, A. (2023). Advanced deep learning approaches for accurate brain tumor classification in medical imaging. Symmetry, 15(3), 571.
Ahmmed, S., Podder, P., Mondal, M. R. H., Rahman, S. A., Kannan, S., Hasan, M. J., ... & Prosvirin, A. E. (2023). Enhancing brain tumor classification with transfer learning across multiple classes: An in-depth analysis. BioMedInformatics, 3(4), 1124-1144.
Asiri, A. A., Soomro, T. A., Shah, A. A., Pogrebna, G., Irfan, M., & Alqahtani, S. (2024). Optimized brain tumor detection: a dual-module approach for mri image enhancement and tumor classification. IEEE Access, 12, 42868-42887.
Nassar, S. E., Yasser, I., Amer, H. M., & Mohamed, M. A. (2024). A robust MRI-based brain tumor classification via a hybrid deep learning technique. The Journal of Supercomputing, 80(2), 2403-2427.
Simo, A. M. D., Kouanou, A. T., Monthe, V., Nana, M. K., & Lonla, B. M. (2024). Introducing a deep learning method for brain tumor classification using MRI data towards better performance. Informatics in Medicine Unlocked, 44, 101423.
Joshi, A. A., & Aziz, R. M. (2024). Deep learning approach for brain tumor classification using metaheuristic optimization with gene expression data. International Journal of Imaging Systems and Technology, 34(2), e23007.
Pacal, I., Celik, O., Bayram, B., & Cunha, A. (2024). Enhancing EfficientNetv2 with global and efficient channel attention mechanisms for accurate MRI-Based brain tumor classification. Cluster Computing, 27(8), 11187-11212.
Asif, S., Zhao, M., Tang, F., & Zhu, Y. (2023). An enhanced deep learning method for multi-class brain tumor classification using deep transfer learning. Multimedia Tools and Applications, 82(20), 31709-31736.
Ravinder, M., Saluja, G., Allabun, S., Alqahtani, M. S., Abbas, M., Othman, M., & Soufiene, B. O. (2023). Enhanced brain tumor classification using graph convolutional neural network architecture. Scientific Reports, 13(1), 14938.
Tandel, G. S., Tiwari, A., Kakde, O. G., Gupta, N., Saba, L., & Suri, J. S. (2023). Role of ensemble deep learning for brain tumor classification in multiple magnetic resonance imaging sequence data. Diagnostics, 13(3), 481