Automated Lion Optimization Algorithm with Deep Transfer Learning Based Oral Cancer Detection and Classification Model
Main Article Content
Abstract
Article Details
References
Lin, H., Chen, H., Weng, L., Shao, J. and Lin, J., 2021. Automatic detection of oral cancer in smartphone-based images using deep learning for early diagnosis. Journal of Biomedical Optics, 26(8), pp.086007-086007.
Chang, X., Yu, M., Liu, R., Jing, R., Ding, J., Xia, J., Zhu, Z., Li, X., Yao, Q., Zhu, L. and Zhang, T., 2023. Deep learning methods for oral cancer detection using Raman spectroscopy. Vibrational Spectroscopy, 126, p.103522.
Warin, K., Limprasert, W., Suebnukarn, S., Jinaporntham, S. and Jantana, P., 2021. Automatic classification and detection of oral cancer in photographic images using deep learning algorithms. Journal of Oral Pathology & Medicine, 50(9), pp.911-918.
Shamim, M.Z.M., Syed, S., Shiblee, M., Usman, M., Ali, S.J., Hussein, H.S. and Farrag, M., 2022. Automated detection of oral pre-cancerous tongue lesions using deep learning for early diagnosis of oral cavity cancer. The Computer Journal, 65(1), pp.91-104.
Srinivasa Sai Abhijit Challapalli. 2024. Sentiment Analysis of the Twitter Dataset for the Prediction of Sentiments. Journal of Sensors, IoT & Health Sciences, 2(4), 1-15.
Fu, Q., Chen, Y., Li, Z., Jing, Q., Hu, C., Liu, H., Bao, J., Hong, Y., Shi, T., Li, K. and Zou, H., 2020. A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: A retrospective study. EClinicalMedicine, 27.
Srinivasa Sai Abhijit Challapalli. (2024). Optimizing Dallas-Fort Worth Bus Transportation System Using Any Logic. Journal of Sensors, IoT & Health Sciences, 2(4), 40-55.
Al-Rawi, N., Sultan, A., Rajai, B., Shuaeeb, H., Alnajjar, M., Alketbi, M., Mohammad, Y., Shetty, S.R. and Mashrah, M.A., 2022. The effectiveness of artificial intelligence in the detection of oral cancer. international dental journal, 72(4), pp.436-447.
K. Vinay Kumar, Sumanaswini Palakurthy, Sri Harsha Balijadaddanala, Sharmila Reddy Pappula, & Anil Kumar Lavudya. (2024). Early Detection and Diagnosis of Oral Cancer Using Deep Neural Network. Journal of Computer Allied Intelligence, 2(2), 22-34.
Swapna Saturi, Gundeti Naveen Kumar, Namilla Siri, Kota Madhuri, & Vallapureddy Yashwanth Reddy. 2025. Deep Learning for Understanding Multi label Imbalanced Chest X-rayDatasets. Journal of Computer Allied Intelligence(JCAI, ISSN: 2584-2676), 3(1), 40-47.
Figueroa, K.C., Song, B., Sunny, S., Li, S., Gurushanth, K., Mendonca, P., Mukhia, N., Patrick, S., Gurudath, S., Raghavan, S. and Imchen, T., 2022. Interpretable deep learning approach for oral cancer classification using guided attention inference network. Journal of biomedical optics, 27(1), pp.015001-015001.
Yang, Z., Pan, H., Shang, J., Zhang, J. and Liang, Y., 2023. Deep-Learning-Based Automated Identification and Visualization of Oral Cancer in Optical Coherence Tomography Images. Biomedicines, 11(3), p.802.
Alabi, R.O., Almangush, A., Elmusrati, M. and Mäkitie, A.A., 2022. Deep machine learning for oral cancer: from precise diagnosis to precision medicine. Frontiers in Oral Health, 2, p.794248.
Amin, I., Zamir, H. and Khan, F.F., 2021. Histopathological image analysis for oral squamous cell carcinoma classification using concatenated deep learning models. medRxiv, pp.2021-05.
Ananthakrishnan, B., Shaik, A., Kumar, S., Narendran, S.O., Mattu, K. and Kavitha, M.S., 2023. Automated Detection and Classification of Oral Squamous Cell Carcinoma Using Deep Neural Networks. Diagnostics, 13(5), p.918.
Huang, Q., Ding, H. and Razmjooy, N., 2023. Optimal deep learning neural network using ISSA for diagnosing oral cancer. Biomedical Signal Processing and Control, 84, p.104749.
Al Duhayyim, M., Malibari, A., Dhahbi, S., Nour, M.K., Al-Turaiki, I., Obayya, M.I. and Mohamed, A., 2023. Sailfish Optimization with Deep Learning Based Oral Cancer Classification Model. Comput. Syst. Sci. Eng., 45(1), pp.753-767.
Warin, K., Limprasert, W., Suebnukarn, S., Jinaporntham, S., Jantana, P. and Vicharueang, S., 2022. AI-based analysis of oral lesions using novel deep convolutional neural networks for early detection of oral cancer. Plos one, 17(8), p.e0273508.
Nanditha, B.R., Geetha, A., Chandrashekar, H.S., Dinesh, M.S. and Murali, S., 2021. An ensemble deep neural network approach for oral cancer screening.
Prabhakaran, R. and Mohana, J., 2023. Stochastic gradient descent-based convolutional neural network to detect and classify oral cavity cancer. Soft Computing, 27(13), pp.9169-9178.
Begum, S.H. and Vidyullatha, P., 2023. Deep Learning Model for Automatic Detection of Oral squamous cell carcinoma (OSCC) using Histopathological Images. International Journal of Computing and Digital Systems.
Ravikumar, M., Rachana, P.G., Shivaprasad, B.J. and Guru, D.S., 2021. Enhancement of mammogram images using CLAHE and bilateral filter approaches. In Cybernetics, Cognition and Machine Learning Applications: Proceedings of ICCCMLA 2020 (pp. 261-271). Springer Singapore.
Argho, A.G., Maswood, M.M.S., Mahmood, M.I. and Mondol, N., 2023. EfficientCovNet: A CNN-based approach to detect various pulmonary diseases including COVID-19 using modified EfficientNet. Intelligent Systems with Applications, p.200315.
Priya, R.D., Karthikeyan, S., Indra, J., Kirubashankar, S., Abraham, A., Gabralla, L.A., Sivaraj, R. and Nandhagopal, S.M., 2023. Self-Adaptive Hybridized Lion Optimization Algorithm with Transfer Learning for Ancient Tamil Character Recognition in Stone Inscriptions. IEEE Access.
Xia, M., Zheng, X., Imran, M. and Shoaib, M., 2020. Data-driven prognosis method using hybrid deep recurrent neural network. Applied Soft Computing, 93, p.106351.
Ribeiro-de-Assis, M.C.F., Soares, J.P., de Lima, L.M., de Barros, L.A.P., Grão-Velloso, T.R., Krohling, R.A. and Camisasca, D.R., 2023. NDB-UFES: An oral cancer and leukoplakia dataset composed of histopathological images and patient data. Data in Brief, 48, p.109128.
Das, M., Dash, R. and Mishra, S.K., 2023. Automatic detection of oral squamous cell carcinoma from histopathological images of oral mucosa using deep convolutional neural network. International Journal of Environmental Research and Public Health, 20(3), p.2131.
Sathishkumar, R., & Govindarajan, M. 2023. A Comprehensive Study on Artificial Intelligence Techniques for Oral Cancer Diagnosis: Challenges and Opportunities. In 2023 International Conference on System, Computation, Automation and Networking (ICSCAN) (pp. 1-5). IEEE.
Mira, E. S., Sapri, A. M. S., Aljehanı, R. F., Jambı, B. S., Bashir, T., El-Kenawy, E. S. M., & Saber, M. 2024. Early Diagnosis of Oral Cancer Using Image Processing and Artificial Intelligence. Fusion: Practice and Applications, 14(1), 293-308.
Das, M., Dash, R., & Mishra, S. K. 2023. Automatic detection of oral squamous cell carcinoma from histopathological images of oral mucosa using deep convolutional neural network. International Journal of Environmental Research and Public Health, 20(3), 2131.
Rahman, A. U., Alqahtani, A., Aldhafferi, N., Nasir, M. U., Khan, M. F., Khan, M. A., & Mosavi, A. 2022. Histopathologic oral cancer prediction using oral squamous cell carcinoma biopsy empowered with transfer learning. Sensors, 22(10), 3833.
Tanriver, G., Soluk Tekkesin, M., & Ergen, O. 2021. Automated detection and classification of oral lesions using deep learning to detect oral potentially malignant disorders. Cancers, 13(11), 2766.
Welikala, R. A., Remagnino, P., Lim, J. H., Chan, C. S., Rajendran, S., Kallarakkal, T. G., ... & Barman, S. A. 2020. Automated detection and classification of oral lesions using deep learning for early detection of oral cancer. IEEE Access, 8, 132677-132693.
Panigrahi, S.; Swarnkar, T. Automated Classification of Oral Cancer Histopathology images using Convolutional Neural Network. In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE: New York, NY, USA, 2019; pp. 1232–1234.
Alhazmi, A., Alhazmi, Y., Makrami, A., Masmali, A., Salawi, N., Masmali, K., & Patil, S. 2021. Application of artificial intelligence and machine learning for prediction of oral cancer risk. Journal of Oral Pathology & Medicine, 50(5), 444-450.