NLP Hybrid Deep Learning Model for E-Learning System Prediction Classifier System
Main Article Content
Abstract
Article Details
References
Liu, T., Wu, Q., Chang, L., & Gu, T. (2022). A review of deep learning-based recommender system in e-learning environments. Artificial Intelligence Review, 55(8), 5953-5980.
Sandiwarno, S., Niu, Z., & Nyamawe, A. S. (2024). A novel hybrid machine learning model for analyzing e-learning users’ satisfaction. International Journal of Human–Computer Interaction, 40(16), 4193-4214.
Subha, S., Sankaralingam, B. P., Gurusamy, A., Sehar, S., & Bavirisetti, D. P. (2023). Personalization-based deep hybrid E-learning model for online course recommendation system. PeerJ Computer Science, 9, e1670.
Das, J. K., Das, A., & Rosak-Szyrocka, J. (2022, September). A hybrid deep learning technique for sentiment analysis in e-learning platform with natural language processing. In 2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM) (pp. 1-7). IEEE.
Benabbes, K., Housni, K., Hmedna, B., Zellou, A., & El Mezouary, A. (2023). A new hybrid approach to detect and track learner’s engagement in e-learning. IEEE Access.
S. Venkatramulu, K. Vinay Kumar, Md. Sharfuddin Waseem, Sabahath Mahveen, Vaishnavi Vaidya, Tulasi Ram Reddy, & Sai Teja Devarakonda. (2024). A Secure Blockchain Based Student Certificate Generation and Sharing System. Journal of Sensors, IoT & Health Sciences, 2(1), 17-27.
Ezaldeen, H., Misra, R., Bisoy, S. K., Alatrash, R., & Priyadarshini, R. (2022). A hybrid E-learning recommendation integrating adaptive profiling and sentiment analysis. Journal of Web Semantics, 72, 100700.
Swapna Saturi, & Arun Kumar Silivery. (2024). Computer Allied Intelligence in the Education Resource-Sharing Based inContract Deep Learning. Journal of Computer Allied Intelligence, 2(4), 51-69.
Bhaskaran, S., & Marappan, R. (2023). Design and analysis of an efficient machine learning based hybrid recommendation system with enhanced density-based spatial clustering for digital e-learning applications. Complex & Intelligent Systems, 9(4), 3517-3533.
Srinivasa Sai Abhijit Challapalli. (2024). Optimizing Dallas-Fort Worth Bus Transportation System Using Any Logic. Journal of Sensors, IoT & Health Sciences, 2(4), 40-55.
Liu, M., & Yu, D. (2023). Towards intelligent E-learning systems. Education and Information Technologies, 28(7), 7845-7876.
Srinivasa Sai Abhijit Challapalli. (2024). Sentiment Analysis of the Twitter Dataset for the Prediction of Sentiments. Journal of Sensors, IoT & Health Sciences, 2(4), 1-15.
Jakkaladiki, S. P., Janečková, M., Krunčík, J., Malý, F., & Otčenášková, T. (2023). Deep learning-based education decision support system for student E-learning performance prediction. Scalable Computing: Practice and Experience, 24(3), 327-338.
Kaouni, M., Lakrami, F., & Labouidya, O. (2023). The design of an adaptive E-learning model based on Artificial Intelligence for enhancing online teaching. International Journal of Emerging Technologies in Learning (Online), 18(6), 202.
Jin, S., & Zhang, L. (2024). Research on the Recommendation System of Music e-learning Resources with Blockchain based on Hybrid Deep Learning Model. Scalable Computing: Practice and Experience, 25(3), 1455-1465.
Alzaid, M., & Fkih, F. (2023). Sentiment Analysis of Students’ Feedback on E-Learning Using a Hybrid Fuzzy Model. Applied Sciences, 13(23), 12956.
Mustapha, R., Soukaina, G., Mohammed, Q., & Es-Sâadia, A. (2023). Towards an adaptive e-learning system based on deep learner profile, machine learning approach, and reinforcement learning. International Journal of Advanced Computer Science and Applications, 14(5).
Ma, Q., Lin, C. T., & Chen, Z. (2024). A hybrid evaluation model for e-learning platforms based on extended TOE framework. International Journal of Information Technology & Decision Making, 23(03), 1171-1202.
Aljaloud, A. S., Uliyan, D. M., Alkhalil, A., Abd Elrhman, M., Alogali, A. F. M., Altameemi, Y. M., ... & Kwan, P. (2022). A deep learning model to predict Student learning outcomes in LMS using CNN and LSTM. IEEE Access, 10, 85255-85265.
Wu, J. (2024). E-learning management systems in higher education: Features of the application at a Chinese vs. European university. Journal of the Knowledge Economy, 1-31.
Salau, L., Hamada, M., Prasad, R., Hassan, M., Mahendran, A., & Watanobe, Y. (2022). State-of-the-art survey on deep learning-based recommender systems for e-learning. Applied Sciences, 12(23), 11996.