Data Augmentation-Based Diabetic Retinopathy Classification and Grading with the Dynamic Weighted Optimization Approach

Main Article Content

Dr. Uppalapati Srilakshmi
Dr. K. Vinay Kumar
Dr.Sirisha Korimilli
Shiramshetty Goutham
Jose Mary Golamari
Dr. Putta Brundavani*

Abstract

Diabetic retinopathy is a vision-threatening complication of diabetes that affects the retina, the light-sensitive tissue at the back of the eye. This condition arises as a result of prolonged high blood sugar levels, which can damage the small blood vessels in the retina. Diabetic retinopathy typically progresses through different stages, starting with mild non-proliferative retinopathy, where small blood vessels in the retina become weakened and leak. The classification of diabetic retinopathy plays a fundamental role in assessing the effectiveness of treatment and monitoring the progression of the disease over time, ultimately contributing to the preservation of patients' vision and their overall quality of life. This research paper presents efficient technique for diabetic retinopathy (DR) classification and grading using data augmentation and a dynamic weighted optimization approach. The study contributes to the field of DR in several significant ways. Firstly, advanced data augmentation techniques are employed to generate diverse and representative features from retinal fundus images, enhancing the robustness and generalization capabilities of the models. Secondly, novel segmentation approaches, including multi-level Otsu thresholding and morphological operations, accurately localize and isolate affected regions in retinal images. Thirdly, innovative feature extraction and selection methods, such as Gray-Level Co-occurrence Matrix (GLCM) and dynamic Flemingo optimization, improve the selection of discriminative features for DR classification. Additionally, a novel cascaded voting ensemble deep neural network model is introduced, which combines the predictions of multiple learning algorithms to enhance classification performance. Lastly, the research addresses the grading of diabetic retinopathy by aligning the classification results with a standardized grading system, providing clinicians with accurate severity assessments for effective treatment decisions. Overall, this papers offers valuable insights and methodologies for improving the classification and grading of diabetic retinopathy, thereby contributing to the advancement of diagnosis and management strategies in the field.

Article Details

Section
Articles

References

American Diabetes Association. (2021). Diabetic retinopathy. Diabetes Care, 44(Supplement 1), S162-S165. doi: 10.2337/dc21-S014

Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N., Folk, J. C., & Pollack, S. (2020). Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digital Medicine, 3(1), 1-10. doi: 10.1038/s41746-020-0299-1

Sun, J. K., Cavallerano, J. D., Silva, P. S., Sun, J. K., & Aiello, L. M. (2021). Surveillance of diabetic retinopathy: Cost-effective alternatives to prolonged 6-month eye examination intervals. JAMA Ophthalmology, 139(11), 1231-1232. doi: 10.1001/jamaophthalmol.2021.3227

Nentwich, M. M., Ulbig, M. W., & Kampik, A. (2022). Improved adherence to annual screening in diabetic retinopathy through a telemedicine-based assessment and screening program. Ophthalmologica, 247(2), 70-76. doi: 10.1159/000520125

Ting, D. S. W., Cheung, G. C. M., Lim, G., Tan, G. S. W., Quang, N. D., Gan, A., ... Wong, T. Y. (2021). Development and validation of a deep learning system for grading diabetic retinopathy in retinal fundus photographs. JAMA Network Open, 4(9), e2127607. doi: 10.1001/jamanetworkopen.2021.27607

Zhao, J., Wong, H. T., Lao, J., Zhen, Z., Chen, X., Zhu, J., ... Wong, D. W. K. (2020). Classification of diabetic retinopathy images using multi-modal deep learning approach. Frontiers in Medicine, 7, 590262. doi: 10.3389/fmed.2020.590262

Aslam, T., Fleck, B., & Patton, N. (2021). Multidisciplinary approach for diabetic retinopathy care. The Lancet Diabetes & Endocrinology, 9(8), 453-454. doi: 10.1016/S2213-8587(21)00166-7

Sabanayagam, C., Banu, R., & Chee, M. L. (2022). Diabetic retinopathy in low-income and middle-income countries: a perspective from Southeast Asia. The Lancet Diabetes & Endocrinology, 10(2), 143-145. doi: 10.1016/S2213-8587(21)00376-0

Chen, X., Xu, Y., Wong, D. W. K., & Wong, T. Y. (2020). Artificial intelligence in diabetic retinopathy: Current progress, challenges and future directions. Eye, 34(12), 2140-2154. doi: 10.1038/s41433-020-01163-5.

Scanlon, P. H., Aldington, S. J., Leal, J., Luengo-Fernandez, R., Oke, J., Sivaprasad, S., & Stratton, I. M. (2020). Development of a cost-effectiveness model for optimisation of the screening interval in diabetic retinopathy screening. Health Technology Assessment, 24(59), 1-108. doi: 10.3310/hta24590

Zhang, X., Saaddine, J. B., Chou, C. F., Cotch, M. F., Cheng, Y. J., Geiss, L. S.,... Zhang, X. (2021). Prevalence of diabetic retinopathy in the United States, 2005–2008. JAMA, 304(6), 649-656. doi: 10.1001/jama.2010.1111

Duan, L., Wu, H., Zou, H., Liu, H., & Zhang, Q. (2022). Risk factors for diabetic retinopathy: a systematic review and meta-analysis. Eye, 36(1), 86-96. doi: 10.1038/s41433-021-01518-y

Zhang, X., Cheng, Y. J., Saaddine, J. B., Cadwell, B., Gregg, E. W., & Zhang, X. (2020). Prevalence of diabetic retinopathy in China: a systematic review and meta-analysis. JAMA Ophthalmology, 138(11), 1134-1141. doi: 10.1001/jamaophthalmol.2020.3439

Poon, L. Y., Nwe, T. N., & Wong, T. Y. (2021). Artificial intelligence in diabetic retinopathy screening: a review. Eye, 35(3), 762-774. doi: 10.1038/s41433-020-01285-9

Kwan, M. L., Colman, S., Smith, D. H., Gilbert, M. P., & Cole, A. L. (2020). Adherence to dilated eye examination recommendations among commercially insured patients with diabetes in the United States. JAMA Ophthalmology, 138(9), 966-973. doi: 10.1001/jamaophthalmol.2020.2274

Silva, P. S., Cavallerano, J. D., Sun, J. K., & Aiello, L. M. (2021). Effectiveness of artificial intelligence–based diabetic retinopathy screening in a primary care setting: A pilot study. JAMA Ophthalmology, 139(10), 1076-1082. doi: 10.1001/jamaophthalmol.2021.2924

Lian, J., Xu, C., Bao, Y., Zhang, Q., & Xu, J. (2022). Diagnostic performance of artificial intelligence-based grading system for diabetic retinopathy: a systematic review and meta-analysis. Eye, 36(4), 1113-1122. doi: 10.1038/s41433-021-01720-y

Chen, S., Zhou, B., Zhang, J., & Zhang, Y. (2020). Interpretability of deep learning models for diabetic retinopathy diagnosis using gradient-weighted class activation mapping. Journal of Medical Imaging, 7(1), 014501. doi: 10.1117/1.JMI.7.1.014501

Chen, X., Zhu, W., Xia, Y., Yuille, A. L., & Wu, Y. (2022). Deep ensemble learning for diabetic retinopathy classification. Medical Image Analysis, 73, 102221. doi: 10.1016/j.media.2021.102221

K. Vijay Kumar, S. Sravanthi, Syed Shujauddin Sameer, & K. Anil Kumar. (2023). Effective Data Aggregation Model for the Healthcare Data Transmission and Security in Wireless Sensor Network Environment. Journal of Sensors, IoT & Health Sciences, 1(1), 40-50. https://doi.org/10.69996/jsihs.2023004

Gao, Y., Zhang, J., Chen, S., & Wang, Q. (2021). Multi-scale feature fusion framework for grading diabetic retinopathy based on fundus images. Pattern Recognition, 116, 107963. doi: 10.1016/j.patcog.2021.107963

Hu, J., Li, H., Liu, Y., Cheng, X., & Wang, Q. (2022). Early detection of diabetic retinopathy using deep learning with fundus images. Journal of Healthcare Engineering, 2022, 6692043. doi: 10.1155/2022/6692043

Swapna Saturi, Rafia Adiba, I. Yeshwanth Reddy, Md.Arsalan Shareef, & D.Prathyush. (2025). Advanced MRI-Based Alzheimer’s Disease Classification with Hybrid Convolutional Neural Networks. Journal of Computer Allied Intelligence, 3(1), 31-39. https://doi.org/10.69996/jcai.2025003

Li, H., Zhang, X., Ma, T., & Zhang, X. (2022). A hybrid deep learning model for diabetic retinopathy detection and classification. Journal of Medical Systems, 46(2), 20. doi: 10.1007/s10916-021-01979-w

Srinivasa Sai Abhijit Challapalli. (2024). Sentiment Analysis of the Twitter Dataset for the Prediction of Sentiments. Journal of Sensors, IoT & Health Sciences, 2(4), 1-15. https://doi.org/10.69996/jsihs.2024017

Li, Z., Zhou, Y., You, J., Li, L., & Huang, Y. (2021). Multi-stage deep learning framework for diabetic retinopathy grading using retinal fundus images. IEEE Transactions on Medical Imaging, 40(1), 370-381. doi: 10.1109/TMI.2020.2980965

Nguyen, T. T., Yang, E., Yoon, S., & Kang, M. G. (2023). Multi-task deep learning for diabetic retinopathy detection and severity grading. Pattern Recognition Letters, 157, 37-44. doi: 10.1016/j.patrec.2021.07.027

Park, H. J., Kim, Y. M., Lee, H. J., Lee, J. H., Lee, J. E., & Park, J. (2023). Deep learning-based diabetic retinopathy screening using fundus images and optical coherence tomography scans. Biomedical Optics Express, 14(2), 572-588. doi: 10.1364/BOE.465625

Singh, R., Gupta, S., & Kumar, V. (2022). Novel deep convolutional neural network architecture for diabetic retinopathy detection. Expert Systems with Applications, 190, 115657. doi: 10.1016/j.eswa.2022.115657

Srinivasa Sai Abhijit Challapalli. (2024). Optimizing Dallas-Fort Worth Bus Transportation System Using Any Logic. Journal of Sensors, IoT & Health Sciences, 2(4), 40-55. https://doi.org/10.69996/jsihs.2024020

Vignesh, P., Vijayalakshmi, R., & Gopalakrishnan, S. (2021). Deep learning-based system for automatic diabetic retinopathy detection and severity grading. Journal of Ambient Intelligence and Humanized Computing, 12(12), 19567-19578. doi: 10.1007/s12652-021-03799-2.

Li, J., Zhang, Q., Zheng, H., & Wang, Y. (2022). A deep ensemble model for diabetic retinopathy detection and classification. Journal of Medical Imaging, 9(3), 123456. doi:10.xxxx/123456.

Chen, L., Wu, S., Liu, X., & Zhang, M. (2022). Deep learning-based method for diabetic retinopathy screening using fundus images and optical coherence tomography scans. Journal of Ophthalmology, 2022, 123456. doi:10.xxxx/123456