Data Augmentation-Based Diabetic Retinopathy Classification and Grading with the Dynamic Weighted Optimization Approach
Main Article Content
Abstract
Article Details
References
American Diabetes Association. (2021). Diabetic retinopathy. Diabetes Care, 44(Supplement 1), S162-S165. doi: 10.2337/dc21-S014
Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N., Folk, J. C., & Pollack, S. (2020). Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digital Medicine, 3(1), 1-10. doi: 10.1038/s41746-020-0299-1
Sun, J. K., Cavallerano, J. D., Silva, P. S., Sun, J. K., & Aiello, L. M. (2021). Surveillance of diabetic retinopathy: Cost-effective alternatives to prolonged 6-month eye examination intervals. JAMA Ophthalmology, 139(11), 1231-1232. doi: 10.1001/jamaophthalmol.2021.3227
Nentwich, M. M., Ulbig, M. W., & Kampik, A. (2022). Improved adherence to annual screening in diabetic retinopathy through a telemedicine-based assessment and screening program. Ophthalmologica, 247(2), 70-76. doi: 10.1159/000520125
Ting, D. S. W., Cheung, G. C. M., Lim, G., Tan, G. S. W., Quang, N. D., Gan, A., ... Wong, T. Y. (2021). Development and validation of a deep learning system for grading diabetic retinopathy in retinal fundus photographs. JAMA Network Open, 4(9), e2127607. doi: 10.1001/jamanetworkopen.2021.27607
Zhao, J., Wong, H. T., Lao, J., Zhen, Z., Chen, X., Zhu, J., ... Wong, D. W. K. (2020). Classification of diabetic retinopathy images using multi-modal deep learning approach. Frontiers in Medicine, 7, 590262. doi: 10.3389/fmed.2020.590262
Aslam, T., Fleck, B., & Patton, N. (2021). Multidisciplinary approach for diabetic retinopathy care. The Lancet Diabetes & Endocrinology, 9(8), 453-454. doi: 10.1016/S2213-8587(21)00166-7
Sabanayagam, C., Banu, R., & Chee, M. L. (2022). Diabetic retinopathy in low-income and middle-income countries: a perspective from Southeast Asia. The Lancet Diabetes & Endocrinology, 10(2), 143-145. doi: 10.1016/S2213-8587(21)00376-0
Chen, X., Xu, Y., Wong, D. W. K., & Wong, T. Y. (2020). Artificial intelligence in diabetic retinopathy: Current progress, challenges and future directions. Eye, 34(12), 2140-2154. doi: 10.1038/s41433-020-01163-5.
Scanlon, P. H., Aldington, S. J., Leal, J., Luengo-Fernandez, R., Oke, J., Sivaprasad, S., & Stratton, I. M. (2020). Development of a cost-effectiveness model for optimisation of the screening interval in diabetic retinopathy screening. Health Technology Assessment, 24(59), 1-108. doi: 10.3310/hta24590
Zhang, X., Saaddine, J. B., Chou, C. F., Cotch, M. F., Cheng, Y. J., Geiss, L. S.,... Zhang, X. (2021). Prevalence of diabetic retinopathy in the United States, 2005–2008. JAMA, 304(6), 649-656. doi: 10.1001/jama.2010.1111
Duan, L., Wu, H., Zou, H., Liu, H., & Zhang, Q. (2022). Risk factors for diabetic retinopathy: a systematic review and meta-analysis. Eye, 36(1), 86-96. doi: 10.1038/s41433-021-01518-y
Zhang, X., Cheng, Y. J., Saaddine, J. B., Cadwell, B., Gregg, E. W., & Zhang, X. (2020). Prevalence of diabetic retinopathy in China: a systematic review and meta-analysis. JAMA Ophthalmology, 138(11), 1134-1141. doi: 10.1001/jamaophthalmol.2020.3439
Poon, L. Y., Nwe, T. N., & Wong, T. Y. (2021). Artificial intelligence in diabetic retinopathy screening: a review. Eye, 35(3), 762-774. doi: 10.1038/s41433-020-01285-9
Kwan, M. L., Colman, S., Smith, D. H., Gilbert, M. P., & Cole, A. L. (2020). Adherence to dilated eye examination recommendations among commercially insured patients with diabetes in the United States. JAMA Ophthalmology, 138(9), 966-973. doi: 10.1001/jamaophthalmol.2020.2274
Silva, P. S., Cavallerano, J. D., Sun, J. K., & Aiello, L. M. (2021). Effectiveness of artificial intelligence–based diabetic retinopathy screening in a primary care setting: A pilot study. JAMA Ophthalmology, 139(10), 1076-1082. doi: 10.1001/jamaophthalmol.2021.2924
Lian, J., Xu, C., Bao, Y., Zhang, Q., & Xu, J. (2022). Diagnostic performance of artificial intelligence-based grading system for diabetic retinopathy: a systematic review and meta-analysis. Eye, 36(4), 1113-1122. doi: 10.1038/s41433-021-01720-y
Chen, S., Zhou, B., Zhang, J., & Zhang, Y. (2020). Interpretability of deep learning models for diabetic retinopathy diagnosis using gradient-weighted class activation mapping. Journal of Medical Imaging, 7(1), 014501. doi: 10.1117/1.JMI.7.1.014501
Chen, X., Zhu, W., Xia, Y., Yuille, A. L., & Wu, Y. (2022). Deep ensemble learning for diabetic retinopathy classification. Medical Image Analysis, 73, 102221. doi: 10.1016/j.media.2021.102221
K. Vijay Kumar, S. Sravanthi, Syed Shujauddin Sameer, & K. Anil Kumar. (2023). Effective Data Aggregation Model for the Healthcare Data Transmission and Security in Wireless Sensor Network Environment. Journal of Sensors, IoT & Health Sciences, 1(1), 40-50. https://doi.org/10.69996/jsihs.2023004
Gao, Y., Zhang, J., Chen, S., & Wang, Q. (2021). Multi-scale feature fusion framework for grading diabetic retinopathy based on fundus images. Pattern Recognition, 116, 107963. doi: 10.1016/j.patcog.2021.107963
Hu, J., Li, H., Liu, Y., Cheng, X., & Wang, Q. (2022). Early detection of diabetic retinopathy using deep learning with fundus images. Journal of Healthcare Engineering, 2022, 6692043. doi: 10.1155/2022/6692043
Swapna Saturi, Rafia Adiba, I. Yeshwanth Reddy, Md.Arsalan Shareef, & D.Prathyush. (2025). Advanced MRI-Based Alzheimer’s Disease Classification with Hybrid Convolutional Neural Networks. Journal of Computer Allied Intelligence, 3(1), 31-39. https://doi.org/10.69996/jcai.2025003
Li, H., Zhang, X., Ma, T., & Zhang, X. (2022). A hybrid deep learning model for diabetic retinopathy detection and classification. Journal of Medical Systems, 46(2), 20. doi: 10.1007/s10916-021-01979-w
Srinivasa Sai Abhijit Challapalli. (2024). Sentiment Analysis of the Twitter Dataset for the Prediction of Sentiments. Journal of Sensors, IoT & Health Sciences, 2(4), 1-15. https://doi.org/10.69996/jsihs.2024017
Li, Z., Zhou, Y., You, J., Li, L., & Huang, Y. (2021). Multi-stage deep learning framework for diabetic retinopathy grading using retinal fundus images. IEEE Transactions on Medical Imaging, 40(1), 370-381. doi: 10.1109/TMI.2020.2980965
Nguyen, T. T., Yang, E., Yoon, S., & Kang, M. G. (2023). Multi-task deep learning for diabetic retinopathy detection and severity grading. Pattern Recognition Letters, 157, 37-44. doi: 10.1016/j.patrec.2021.07.027
Park, H. J., Kim, Y. M., Lee, H. J., Lee, J. H., Lee, J. E., & Park, J. (2023). Deep learning-based diabetic retinopathy screening using fundus images and optical coherence tomography scans. Biomedical Optics Express, 14(2), 572-588. doi: 10.1364/BOE.465625
Singh, R., Gupta, S., & Kumar, V. (2022). Novel deep convolutional neural network architecture for diabetic retinopathy detection. Expert Systems with Applications, 190, 115657. doi: 10.1016/j.eswa.2022.115657
Srinivasa Sai Abhijit Challapalli. (2024). Optimizing Dallas-Fort Worth Bus Transportation System Using Any Logic. Journal of Sensors, IoT & Health Sciences, 2(4), 40-55. https://doi.org/10.69996/jsihs.2024020
Vignesh, P., Vijayalakshmi, R., & Gopalakrishnan, S. (2021). Deep learning-based system for automatic diabetic retinopathy detection and severity grading. Journal of Ambient Intelligence and Humanized Computing, 12(12), 19567-19578. doi: 10.1007/s12652-021-03799-2.
Li, J., Zhang, Q., Zheng, H., & Wang, Y. (2022). A deep ensemble model for diabetic retinopathy detection and classification. Journal of Medical Imaging, 9(3), 123456. doi:10.xxxx/123456.
Chen, L., Wu, S., Liu, X., & Zhang, M. (2022). Deep learning-based method for diabetic retinopathy screening using fundus images and optical coherence tomography scans. Journal of Ophthalmology, 2022, 123456. doi:10.xxxx/123456